PRODUCTION AND USE OF CORROSION INHIBITORS ON THE BASIS OF TWO-ATOMIC PHENOLS AND LOCAL RAW MATERIALS

ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ ИНГИБИТОРОВ КОРРОЗИИ НА ОСНОВЕ ДВУХАТОМНЫХ ФЕНОЛОВ И МЕСТНОГО СЫРЬЯ
Цитировать:
Olimov B., Akhmedov V., Gafurova G. PRODUCTION AND USE OF CORROSION INHIBITORS ON THE BASIS OF TWO-ATOMIC PHENOLS AND LOCAL RAW MATERIALS // Universum: химия и биология : электрон. научн. журн. 2021. 11(89). URL: https://7universum.com/ru/nature/archive/item/12473 (дата обращения: 22.12.2024).
Прочитать статью:
DOI - 10.32743/UniChem.2021.89.11.12473

 

ABSTRACT

The main part of corrosion inhibitors used in the oil and oil refining industry are complex organic compounds belonging to different classes.  Soluble corrosion inhibitors in hydrocarbons are most effective for use in the oil and gas industry because they have a high protective effect and easy interaction with construction materials.

АННОТАЦИЯ

Основную часть ингибиторов коррозии, применяемых в нефтяной и нефтеперерабатывающей промышленности, составляют сложные органические соединения, относящиеся к разным классам. Растворимые ингибиторы коррозии в углеводородах наиболее эффективны для использования в нефтегазовой промышленности, поскольку они обладают высоким защитным действием и легко взаимодействуют со конструкционно материалами.

 

Keywords: inhibitor, diatomic phenols, monoethanolamine, corrosion rate, corrosion inhibitor effectiveness

Ключевые слова: ингибитор, двухатомные фенолы, моноэтаноламин, скорость коррозии, эффективность ингибитора коррозии.

 

Corrosion of metals is a complex process that leads to the absorption of metals as a result of their transition to an oxidized state with the disappearance of their specific properties. Due to mechanism of corrosion processes, there are the following types of corrosion of metals[1-6]:

- chemical corrosion is the result of the interaction of the metal surface with the environment;

- сontact (electrochemical) corrosion occurs as a result of interaction of these – metals with galvanic elements and electrolytes;

And also microbiological corrosion, which is carried out as a result of the action of microorganisms.

The generally accepted laws of corrosion mechanism are all related to aqueous solutions. In this case, corrosion is considered an electrochemical process that occurs in the anode areas of the metal surface, where it occurs when iron ions pass into the solution:

Fe0 – 2e- = Fe2+

In order for electrochemical corrosion to occur, the system must contain an oxidizer that pulls excess electrons from the metal surface. Basically, the role of oxidizer is performed by water-soluble oxygen or H+ cations. When the concentration of hydrogen cations sharply decreases, the cathodic return of oxygen becomes the main reaction:

2H+ + 2e- = H2

½ O2 +H2O +2e- = 2OH-

Corrosion inhibitors are chemical compounds or their compositions, and a small amount in an aggressive environment also slows the corrosion rate of metals. The advantage of corrosion inhibitors over other methods of protection is its relative simplicity, low material consumption and low labor costs, the ability to simultaneously protect underground and surface metal structures, as well as access to any part of the corrosion environment[7-11].

The protective properties of organic compounds are significantly improved if they contain two pairs of undistributed electrons, and with the inclusion in the molecule of different functional groups containing heteroatoms, which can be electrodonated. At the junction of the protective property, the heteroatom is placed in the following sequence: O, N, S.  Alternatively, in different functional groups, the electrodonuclear function of heteroatom changes[12-13].

The reaction is carried out in a three-stringed tube equipped with a thermometer and a mixer, monoethanolamine and formalin are placed in the tube in a ratio of 1:1,5 molars. The reaction mixture is mixed without heating for 30 minutes, after which the tube is connected to the refrigerator and the water is drained by means of a vacuum pump. Then add 1 mole vinyl ether of diatomic phenol from 95-98°C and mix for 14 hours. Control of the process flour is carried out depending on the solubility of the reaction product in an 8% aqueous solution of hydrochloric acid. The resulting reaction mass is dissolved in benzene and separated, after which the resulting benzene solution is washed 3-4 times with water. The reaction yield is 91%. The brutto formula of the substance is C13H17O3N and molecular mass 235 g/mole. Separated from the reaction mass, water contains 10-20% monoethanolamine and formaldehyde.

The results of the study showed that during the condensation of vinyl ethet of diatomic phenol with formaldehyde and monoethanolamine, only when formaldehyde is used in paraform form, it is formed according to the following scheme:

 

Figure 1. IR spectrum of aminomethyllated corrosion inhibitor

 

The resulting product is a viscous light yellow color resinous substance, insoluble in water, but well soluble in organic solvents and acid solutions. Based on the results obtained, the study on the development of corrosion inhibitors shows the prospects.

Table 1.

Dependence of AMKI corrosion inhibitor on the concentration of anti-corrosion characteristics

Sample

S, 10-4 m2

τ, hour

Mass, m0, г

Mass, m, г

Δm=m0-m, г

Inhibitor concentration, %

Corrosion rate,  m/S2*c

Z, %

 

γ   

 

1

17

72

6,635

6,052

0,583

-

4,763

-

-

2

17

72

6,618

6,435

0,183

0,001

1,496

68,6

3,18

3

17

72

6,756

6,611

0,144

0,01

1,181

75,2

4,03

4

17

72

6,698

6,618

0,079

0,05

0,652

86,3

7,3

5

17

72

6,652

6,577

0,074

0,03

0,609

87,2

7,8

6

17

72

6,682

6,637

0,0448

0,1

0,366

92,3

12,98

 

Figure 2.Dependence of steel corrosion rate on AMKI concentration

 

Figure 3. Dependence of corrosion inhibitor effectiveness on AMKI concentration

 

In conclusion, favorable conditions for the synthesis of aminomethylated and sulfomethylated corrosion inhibitors based on vinyl ether of diatomic phenols were identified and experimental data were presented. It was shown that the mechanism of corrosion protection of organic compounds containing sulfo and amino group fragments is fundamentally different from the mechanism of action of other inhibitors. The use of inhibitors synthesized in water circulation systems of oil drilling and refining enterprises maintains a high level of protection in hydrogen sulfide and emulsified hydrocarbon systems.

 

References:

  1. Назаров Шомурод, Ахмедов Вохид, Олимов Бобир, Ҳаитов Садулло синтез мономеров при участии винилацетилена из одноатомных фенолов содержащих ариловую группу // Universum: химия и биология. 2020. №11-2 (77). URL: https://cyberleninka.ru/article/n/sintez-monomerov-pri-uchastii-vinilatsetilena-iz-odnoatomnyh-fenolov-soderzhaschih-arilovuyu-gruppu (дата обращения: 16.04.2021).
  2. Olimov, B., & Akhmedov, V. (2020). The effect of reaction duration and catalyst on the synthesis of arylvinyl esters. Збірник наукових праць ΛΌГOΣ, 33-37. https://doi.org/10.36074/20.11.2020.v2.07
  3. Bahodirovich, Olimov B., et al. "Synthesis of  Resorcinol Vinyl Ether in the Mono-position, Influence of the Catalyst, Temperature and Solvent on the Reaction Yield." JournalNX, 2020, pp. 44-51.
  4. Б.Б. Олимов, В.Н. Ахмедов, Ш.К. Назаров. Электронная структура и квантово-химические расчёты виниловых эфиров фенолов. U55 Universum: химия и биология: научный журнал. – № 4(70). М., Изд. «МЦНО», 2020. – 53-57с.
  5. B.B. Olimov, V.N. Ahmedov, S. Hayitov.  Ikki atomli fenollar asosida vinilli efirlarni olish usullari. Fan va texnologiyаlar taraqqiyoti ilmiy – texnikaviy  jurnal. - № 1/2020.
  6. Mирхамитова Д.Х., Нурманов С.Э., Хабиев Ф.М., Худайберганова С.З., Teшабаев Б. Разработка катализаторов для синтез N-винилморфолина. // II Межд. науч. конф. «Современная химия: Успехи и достижения». -Чита. -2016 г. -C. 282-283.
  7. Зиядуллаев О.Э., Мирхамитова Д.Х., Нурманов С.Э. Турли усуллар ёрдамида ароматик ацетилен спиртлари синтези. // ЎзМУ Хабарлари журнали. -Тошкент, -2012. -№3/1. -С.25-29.
  8. Мирхамитова Д.Х., Нурманов С.Э., Жураев В.Н. Каталитический синтез N-винилпиперидина. // Журн. ХПС. -Ташкент. -2001. -Спец. вып. -С.86-87.
  9. Мирхамитова Д.Х. Азот тутган гетероҳалқали бирикмаларни винилҳосилалари синтези ва хоссалари. // ЎзМУ Хабарлари журнали. -Ташкент, -2012. -№3/1. -С.79-84.
  10. Б.Б. Олимов, В.Н. Ахмедов. Винилацетилен асосида фенолларнинг винил эфирлари синтези. “Замонавий ишлаб чикаришнинг мухандислик ва технологик муаммоларини инновацион ечимлари” Халкаро илмий анжуман материаллари Бухоро. 2019. 37-39 б.
  11. В. Ахмедов, Б. Олимов, Г. Гафурова. Винилачетилен иштирокида винил эфирлар олиш. НамДУ илмий ахборотномаси - Научный вестник НамГУ 2021 йил 9-сон. 37-43 б.
  12. B.B. Olimov, V.N. Akhmedov, G.A. Gafurova. Application of derivatives of diatomic phenols as corrosion inhibitors. Euro Asian Conference on Analytical Research (Germany) ISBN: 978-1-913482-99-2. 2021. 15 October. p. 136-138.
Информация об авторах

Associate Professor of the Bukhara Engineering and Technological Institute, Republic of Uzbekistan, Bukhara

доцент, Бухарский инженерно-технологический институт, Узбекистан, г. Бухара

Professor, Head of the “Chemical engineering” Department,  Bukhara Engineering-Technological Institute, Bukhara, Republic of Uzbekistan

профессор, заведующий кафедрой «Химическая инженерия», Бухарский инженерно-технологический институт, Республика Узбекистан, г. Бухара

Assistant of the Department of Chemistry of the Bukhara Institute of Engineering-Technology, Uzbekistan, Bukhara

ассистент кафедры химии Бухарского инженерно-технологического института, Узбекистан, Бухара

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.
Top