д-р хим. наук, профессор, Термезский государственный университет, 190111, Республика Узбекистан, г. Термез, улица Ф. Ходжаева, 43
Изучение физико-химических свойств полученного полисульфидного олигомера на основе тетрасульфида натрия и фосфата аммония
АННОТАЦИЯ
В данной работе отражён процесс изучения физико-химических свойств: плотность, температура плавления, растворимость сера-, азот- и фосфорсодержащего полисульфидного олигомера. Также, приведены результаты исследования его состава методом ИК-спектроскопии и термические характеристики по методу ДСК.
ABSTRACT
In this paper, we studied the physicochemical properties: density, melting point, solubility of sulfur-, nitrogen- and phosphorus-containing polysulfide oligomer. Also, the results of the study of its composition by IR spectroscopy and thermal characteristics by the DSC method are presented.
Ключевые слова: фосфорсодержащий олигомер, азотсодержащие соединения, вязкость, олигомеры.
Keywords: phosphorus-containing oligomer, nitrogen-containing compounds, viscosity, oligomers.
Введение.
Основные направления в развитии технологии герметика, антикоррозионных покрытий и огнестойких материалов направлены на модификацию каучукоподобных полимеров для повышения эффективности строительных и промышленных композитов. Увеличение срока службы железобетонных, железных и полимерных конструкций, улучшение их эксплуатационных качеств неотделимы от решения общей задачи дальнейшего повышения качества строительства и промышленных железных конструкций.
Вместе с тем, приоритетным направлением по повышению качества герметиков, антикоррозионных покрытий и огнестойких материалов являются исследования в области использования органических модификаторов индивидуального и полифункционального действия. Модифицирование герметиков, антикоррозионных покрытий и огнестойких материалов является наиболее доступным и простым способом существенного повышения эффективности герметика, покрытия металлов и огнестойкой древесины, полимеров и может быть успешно использовано для этих целей. Эти качества полисульфидных добавок играют особую роль при создании полимерных композиционных материалов различного назначения. Наполнение всегда приводит к затруднениям при формовании изделий, что связано с повышением вязкости расплава по сравнению с расплавом ненаполненного полимера [1,2].
В целом комплекс свойств наполненных полимеров определяется совместным действием ряда факторов, наиболее значимыми из которых являются: природа термопласта и наполнителя, форма и размер частиц наполнителя, взаимное расположение частиц наполнителя и изменение их локальной плотности по объему образца, концентрация наполнителя [3,4].
Методы и материалы. Для определения состава нового синтезированного олигомера проводились ИК-спектроскопические исследования. Проводилось исследование влияния олигомера на процесс ДСК сера-, азот- и фосфорсодержащего олигомера марки NDP-3. Масса образца NDP-3 не меняется до 207оС. На кривой ДСК в температурном диапазоне 20 -370ОС наблюдается один эндотермический пик (при 250оС), что соответствует плавлению образца.
Обсуждение полученных результатов. Данная работа посвящена изучение физико-химических свойств сера-, азот и фосфорсодержащего полисульфидного олигомера.
Модификация известных полимеров, разработка наполненных функциональными добавками полимерных композиционных материалов, либо смесевых композиций, является сегодня одним из приоритетных направлений в создании полимеров и композитов с прогнозируемыми свойствами.
Получение новых синтезированных высоконаполнительных добавок для полимерных материалов, обладающих высокой термостойкостью и огнезащитной эффективностью, стабилизации полимеров, экологически безопасных и экономичных на сегодняшний день является актуальной задачей.
Были изучены физико-химические свойства: плотность, температура плавления, растворимость, ИК-спектроскопия и ДСК в сера-, азот- и фосфорсодержащем олигомере. Данные физико-химических характеристик синтезированного высоконаполнительного олигомера марки NMA-8 (Тетрасульфид натрия, аммофос с органическими галоидсодержащими соединениями) представлены в табл.1.
Таблица 1.
Физико-химические показатели полисульфидного олигомера
Показатели |
Высоконаполнительный олигомер |
NMA-8 |
|
Плотность, г/см3 ГОСТ 15139-69 |
1,28 |
Тпл оС |
124 |
Ƞхв |
0,065 |
Растворимость |
Диметилформамид |
Внешний вид и цвет |
Вязкое вещество коричневого цвета |
На ИК-спектре NMA-8 в областях 2918-2850 см-1 имеются полосы поглощения, подтверждающие наличие -СН2- групп. Валентные колебания всех активных групп проявляются в виде слабых узких полос между обычными полосами валентных колебаний –S–S– в области 557 – 418 см-1. Наличие групп, содержащих фосфор Р–О–С в области 1157–1020 см-1, подтверждает широкая интенсивная полоса и серасодержащие соединения в областях 401-597 см-1. В области 1020 см-1 показана полоса поглощения O‑CO-O группы.
Кроме того, на ИК-спектроскопии в областях 696 – 605 см-1 появляются узкие малоинтенсивные полосы, содержащие связи C–S серасодержащего соединения. При рассмотрении ИК-спектров NMA-8 видны интенсивные P=O группы в области 1438 – 1402 см-1 и органические фосфаты в области 1126 см-1 -1215 см-1. (Рис.1).
Рисунок 1. ИК-спектр сера-, азот- и фосфорсодержащего олигомера марки NMA-8
Рисунок 2. ДСК сера-, азот- и фосфорсодержащего олигомера марки NMA-8
Масса образца NMA-8 не меняется до 193.4 оС. На кривой ДСК в этом температурном диапазоне 20 -193ОС наблюдается один эндотермический пик (90.6оС), что соответствует плавлению образца, выше температуры 194оС образец начинает разлагаться в два этапа – до 250оС со скоростью 4%/мин, потерей массы 45%, и выше 250оС со скоростью 3.5%/мин, потерей массы 28%. Оба этапа эндотермические (Общая энергия -398 J/g)
Выводы. Таким образом, характеристические свойства сера-, фосфор- и азотсодержащего олигомера были определены методом ИК-спектроскопии и ДСК, в результате лабораторных испытаний было доказано, что олигомер может быть использован в качестве высоконаполнительных добавок для полимерных материалов.
Список литературы:
1. Егорова О.В., Артеменко С.Е., Кадыкова Ю.А. Полиэтиленовые композиции, наполненные дисперсным ба-зальтом // Пластические массы, 2012. №9. С. 38 –39.
2. Кербер М.Л., Виноградов В.М., Головкин Г.С. и др. Полимерные композиционные материалы: структура, свойства, технология: учеб. пособие// СПб.: Профессия, 2008. 560 с.
3. Ней Зо Лин., Аверьянова М.Н., Осипчик В.С., Кравченко Т.П. Структурно-механические свойства высоко-наполненных полиолефиновых композиций// Успехи в химии и химической технологии, 2014. T. XXVIII. № 3(152). С.55-57.
4. Шостак Т.С., Будаш Ю.А., Пахаренко В.В., Сташкевич И.А., Пахаренко В.А. Композиции на основе ПЭ, наполненные алюмосиликатом // Пластические массы, 2011. № 4 .С. 39-43.