ADAPTIVE MULTIMODAL BIOMETRIC AUTHENTICATION SYSTEMS: A HUMAN-CENTERED ANALYSIS OF DESIGN, EVALUATION, AND SECURITY CHALLENGES

АДАПТИВНЫЕ МУЛЬТИМОДАЛЬНЫЕ БИОМЕТРИЧЕСКИЕ СИСТЕМЫ АУТЕНТИФИКАЦИИ: АНАЛИЗ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ, ОЦЕНКИ И БЕЗОПАСНОСТИ С ПОЗИЦИИ ЧЕЛОВЕКООРИЕНТИРОВАННОГО ПОДХОДА
Цитировать:
Norboev B.U., Andokulov T.K. ADAPTIVE MULTIMODAL BIOMETRIC AUTHENTICATION SYSTEMS: A HUMAN-CENTERED ANALYSIS OF DESIGN, EVALUATION, AND SECURITY CHALLENGES // Universum: технические науки : электрон. научн. журн. 2026. 1(142). URL: https://7universum.com/ru/tech/archive/item/21701 (дата обращения: 27.01.2026).

 

ABSTRACT

The fast growth of digital technology in the last few years has completely changed how people use information systems. Digital access is becoming a big part of everyday life, from online banking and electronic government services to remote education and healthcare platforms. This change has also shown that traditional ways of authenticating users, especially those that use passwords and physical tokens, have serious flaws. These kinds of systems rely a lot on how users act and remember things, which makes them easy to steal, reuse, and attack through social engineering [1].Biometric identification systems use unique human traits to provide a more natural and possibly safer option. But practical experience and previous studies suggest that systems that use only one biometric modality frequently don't work well in real-world situations. Environmental noise, sensor constraints, and inherent variability in human behavior can markedly diminish reliability [2].This research offers a comprehensive and human-centric examination of adaptive multimodal biometric authentication systems. The study examines the enhancement of security, stability, and usability by the integration of numerous biometric features into a unified framework. Special emphasis is given to system architecture, fusion methodologies, assessment metrics, and security concerns. The analysis shows that multimodal biometric systems can be a practical and long-term answer to modern digital identification problems if they are developed with flexibility and extensive testing in mind.

АННОТАЦИЯ

Быстрый рост цифровых технологий за последние несколько лет полностью изменил то, как люди используют информационные системы. Цифровой доступ становится важной частью повседневной жизни: от онлайн-банкинга и электронных государственных услуг до платформ дистанционного образования и здравоохранения. Это изменение также показало, что традиционные способы аутентификации пользователей, особенно те, которые используют пароли и физические токены, имеют серьезные недостатки. Такие системы сильно зависят от того, как пользователи действуют и запоминают информацию, что делает их легкими для кражи, повторного использования и атак с помощью социальной инженерии [1]. Биометрические системы идентификации используют уникальные человеческие черты, чтобы предложить более естественный и, возможно, более безопасный вариант. Но практический опыт и предыдущие исследования показывают, что системы, использующие только одну биометрическую модальность, часто плохо работают в реальных условиях. Шум окружающей среды, ограничения датчиков и присущая изменчивость человеческого поведения могут значительно снизить надежность [2]. Это исследование предлагает всесторонний и ориентированный на человека анализ адаптивных многомодальных систем биометрической аутентификации. В исследовании рассматривается повышение безопасности, стабильности и удобства использования за счет интеграции множества биометрических признаков в единую систему. Особое внимание уделяется архитектуре системы, методологиям слияния, метрикам оценки и вопросам безопасности. Анализ показывает, что мультимодальные биометрические системы могут стать практичным и долгосрочным решением современных проблем цифровой идентификации, если они разрабатываются с учетом гибкости и всестороннего тестирования.

 

Keywords: adaptive biometric authentication; multimodal biometrics; identity verification systems; biometric fusion strategies; authentication security; false acceptance rate (FAR); false rejection rate (FRR); performance evaluation of biometric systems; presentation attack detection (PAD); human-centered authentication design

Ключевые слова: адаптивная биометрическая аутентификация; мультимодальная биометрия; системы верификации личности; стратегии биометрического слияния; безопасность аутентификации; вероятность ложного принятия (FAR); вероятность ложного отторжения (FRR); оценка производительности биометрических систем; обнаружение атак предъявления (PAD); человекоориентированный дизайн аутентификации

 

1. INTRODUCTION

Authentication is not just a technical process; it is an important way to build trust that decides who can access digital resources and under what conditions. As digital services get bigger, the cost of failing to authenticate has gone up a lot. Unauthorized access can cause loss of money, privacy breaches, and even hazards to public safety. Even with these hazards, a lot of systems still use passwords as their main way to protect themselves [1].Passwords are easy to use, but they make people think too much. In real life, people often use the same easy password on more than one site, write it down, or share it by mistake. These actions are not solely attributable to ignorance; they illustrate the discord between human memory constraints and contemporary security requirements [4]. Token-based authentication techniques make things safer, but they can make things harder, such when you lose a device or have to pay more to run your business.

Biometric authentication solutions try to close this gap by making security systems work with natural human attributes. Fingerprints, faces, voices, and iris patterns are not abstract secrets that users must remember; they are essential components of identity [2]. However, using biometric systems in the real world has shown that they have several serious problems. A fingerprint scanner might not work if the skin is worn down, facial recognition might not work well in low light, and speech recognition might not work well if there is noise or illness [5].

These findings have prompted the creation of multimodal biometric authentication systems that integrate many biometric attributes to offset individual vulnerabilities. Multimodal systems accept diversity and redundancy instead of presuming that one biometric modality will work well in all situations. This study examines the design and evaluation of such systems in a pragmatic and human-centric manner.

2. WORK THAT IS RELATED

Early studies on fingerprint recognition showed that ridge patterns and minutiae are quite unique, which laid the scientific groundwork for biometric authentication [6]. With more computing power, facial recognition became the most popular method, especially with the advent of deep learning models that could learn strong feature representations from enormous datasets [7].

Even with these improvements, many studies have demonstrated that unimodal biometric systems are still vulnerable to changes in the environment and attacks that try to trick them [8]. For instance, high-quality photos or masks can trick facial recognition systems, while manufactured replicas can target fingerprint systems. Because of these weaknesses, researchers have looked into multimodal biometric techniques as a way to make systems more stable and secure [3].

Research in multimodal biometrics has concentrated on various fusion procedures and assessment methodologies. Ross and Jain showed that using more than one type of biometric system together cuts down on errors by a large amount compared to using just one type of system [3]. Later research stressed how important systematic performance testing is. This led to international standards like ISO/IEC 19795, which set out how biometric systems should be tested and reported [10].

More recently, the focus has switched to adaptive systems that change fusion procedures and thresholds dependent on the situation, the level of risk, and the quality of the data. This change shows that people are starting to grasp that authentication is not a one-time event but an ongoing engagement between users, systems, and settings.

3. METHODOLOGY

3.1 The structure of the system

An adaptive multimodal biometric authentication system usually has a number of parallel processing pipelines, each of which is responsible for a different biometric modality. For example, a fingerprint pipeline looks at ridge patterns, a facial pipeline looks at visual aspects, and a voice pipeline looks at features that are unique to each speaker. During data capture and feature extraction, each pipeline works on its own, which makes it modular and fault-tolerant [3].

The system combines the outputs after feature extraction using a fusion module. This module is very important for figuring out how well the whole system works since it turns different types of biometric evidence into a single confidence value. The last step is a decision-making component that compares this metric against set or changing thresholds to see if access should be permitted.

This architectural split makes the system more flexible, since designers can add or delete modalities without having to rethink the whole thing. It also allows adaptive behavior, which means that system settings can be changed depending on the environment or security needs.

3.2 Strategies for Fusion

The most important thing about multimodal biometric systems is that they use fusion. Feature-level fusion gives you a lot of information, but you need to be careful about normalizing and aligning data that comes from different sources [12]. Decision-level fusion is easy, but it could throw away useful information by turning each modality into a binary outcome.

Score-level fusion is a workable middle ground. In this method, each modality gives a similarity score, and these scores are added together using weighted sums or probabilistic models [3]. The weights can be fixed or changeable, depending on how reliable each modality is in the given situation. The algorithm can, for instance, put less weight on face recognition and more weight on fingerprint or voice data if the quality of the facial image is poor.

3.3 Evaluation of Performance

To judge biometric systems, you need to do more than just report their overall accuracy. False Acceptance Rate (FAR) and False Rejection Rate (FRR) are two metrics that show the important balance between security and usability [10]. In actual implementations, supplementary metrics such as Failure to Enroll (FTE) and Failure to Acquire (FTA) are similarly significant, as they indicate the frequency with which users are unable to properly engage with the system [13].

An evaluation that focuses on people also looks at how users feel about the product. Even if the technology works well, long authentication delays, recurrent failures, or intrusive capture procedures can make users less likely to adopt it. So, when doing an evaluation, you need to balance numbers with other factors.

4. OUTCOMES AND DISCOURSE

Examination of current empirical research indicates that multimodal biometric systems consistently surpass unimodal systems under various operational settings [3]. The system becomes more robust against noise, sensor failure, and user variability by combining complimentary biometric features. This ability to bounce back is especially useful in places where you can't control things, like public service kiosks or mobile apps.

From a security point of view, multimodal systems make it much harder for attackers to fake things. An attacker would need to trick more than one biometric sensor at the same time, which is much harder than assaulting just one [11]. But making things more complicated also makes things harder, like making the enrolling process more expensive and time-consuming.

The results indicate that adaptive strategies—like context-aware weighting and dynamic threshold adjustment—are necessary to get the most out of multimodal systems. Fusion might create new sources of mistake instead of getting rid of old ones if it isn't done carefully.

CONCLUSION

The rapid evolution of digital technology has significantly transformed user interactions with information systems, highlighting flaws in traditional authentication methods such as password and token usage, which are often vulnerable to social engineering. This research presents an evaluation of adaptive multimodal biometric authentication systems that integrate multiple biometric traits to enhance security, stability, and usability. The study underscores the importance of system architecture, fusion methods, and performance metrics. Unimodal biometric systems struggle with environmental challenges, while multimodal systems improve reliability by leveraging diverse biometric attributes. Through methodologies such as feature-level, decision-level, and score-level fusion, these systems aim to balance security needs and user experience, addressing the complexities of real-world applications. Empirical findings suggest that multimodal systems outperform unimodal ones under various conditions, offering greater resilience against attacks, though they also introduce challenges like increased enrollment costs and complexity. Adaptive strategies are essential for optimizing performance in these systems.

 

References:

  1. A. K. Jain, A. Ross, and S. Prabhakar, "An Introduction to Biometric Recognition," IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.https://ieeexplore.ieee.org/document/1262027
  2. A. Jain, P. Flynn, and A. Ross, Handbook of Biometrics, Springer, New York, 2008.https://link.springer.com/book/10.1007/978-0-387-71041-9
  3. A. Ross and A. K. Jain wrote "Multimodal Biometrics: An Overview" for the 12th European Signal Processing Conference (EUSIPCO) in 2004.https://ieeexplore.ieee.org/document/708447
  4. M. Gawron, F. Cheng, and K. Wang, "Password Security: A Case Study," Proceedings of the ACM Conference on Computer and Communications Security, 2014.https://dl.acm.org/doi/10.1145/2660267.2660341
  5. P. Grother, M. Ngan, and K. Hanaoka, "Face Recognition Vendor Test (FRVT): Performance of Face Recognition Algorithms," NIST, 2018.  https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt
  6. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, Springer, 2009. https://link.springer.com/book/10.1007/978-1-84882-254-2
  7. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf wrote "DeepFace: Closing the Gap to Human-Level Performance in Face Verification."
  8. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) took place in 2014.https://ieeexplore.ieee.org/document/6909616
  9. N. K. Ratha, J. H. Connell, and R. M. Bolle, "Enhancing Security and Privacy in Biometrics-based Authentication Systems," IBM Systems Journal, vol. 40, no. 3, pp. 614–634, 2001.https://ieeexplore.ieee.org/document/5389553
  10. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics, Springer, 2006. https://link.springer.com/book/10.1007/0-387-36541-9
  11. ISO/IEC 19795-1:2021, Information Technology—Biometric Performance Testing and Reporting—Part 1: Principles and Framework.https://www.iso.org/standard/73515.html
  12. ISO/IEC 30107-1:2023, Information Technology—Biometric Presentation Attack Detection—Part 1: Framework.https://www.iso.org/standard/83828.html
  13. S. Marcel, M. Nixon, and S. Li, Handbook of Biometric Anti-Spoofing, Springer, 2019.https://link.springer.com/book/10.1007/978-3-319-92627-8
  14. NIST, 2019, Biometric Performance Testing and Reporting.https://www.nist.gov/publications/biometric-performance-testing-and-reporting
  15. Bexzod, N., & Berdiev, G. (2024). AI Revolutionizes Identity Verification and Multi-Factor Authentication: Security in the Digital Age. Best Journal of Innovation in Science, Research and Development, 2, 10.
  16. Shoniyozova, Y. Q., Turdiyeva, M. A., & Norboyev, B. U. (2020). Network attack prevention systems. инновационные механизмы и стратегические приоритеты научно, 46.
  17. Bekhzod, N., & Berdiev, G. (2023). Development of a System for Automating the Process of Lending to Individuals in Banks. American Journal of Public Diplomacy and International Studies (2993-2157), 12, 21.
  18. Rustamov, S., & Bexzod, N. (2024). AI's Evolution: Changing the Lending Landscape in the Digital Age. Best Journal of Innovation in Science, Research and Development, 3(2), 160-162.
  19. Raxmatillayevich, A. M., & Xolmirzo o‘g, A. T. L. (2025). GPT MODELLARINING TABIIY TILNI QAYTA ISHLASHDAGI INQILOBI. Global Science Review, 4(5), 716-725.
Информация об авторах

Assistant, University of Information Technologies and Management, Uzbekistan, Karshi

ассистент Университета информационных технологий и менеджмента, Узбекистан, г. Карши

Senior Lecturer at the University of Information Technologies and Management, Uzbekistan, Karshi

ст. преп. Университета информационных технологий и менеджмента, Узбекистан, г. Карши

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Звездина Марина Юрьевна.
Top