ON THE POSSIBILITY OF USING FLOTATION WASTE FROM AGMK COPPER IN THE ROLE OF AN ACTIVE ADDITIVE TO PORTLAND CEMENT

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ФЛОТАЦИОННЫХ ОТХОДОВ МЕДИ АГМК В РОЛИ АКТИВНОЙ ДОБАВКИ К ПОРТЛАНДЦЕМЕНТУ
Цитировать:
ON THE POSSIBILITY OF USING FLOTATION WASTE FROM AGMK COPPER IN THE ROLE OF AN ACTIVE ADDITIVE TO PORTLAND CEMENT // Universum: технические науки : электрон. научн. журн. Mukhamedbaeva Z.A. [и др.]. 2025. 12(141). URL: https://7universum.com/ru/tech/archive/item/21471 (дата обращения: 22.01.2026).
Прочитать статью:
DOI - 10.32743/UniTech.2025.141.12.21471

 

ABSTRACT

In connection with the possibility of creating new building materials with increased resistance in aggressive environments based on secondary raw materials and industrial waste, there is a further need for systematic research and use of these materials in the production of Portland cement. In this regard, the tailings from the enrichment of ferrous and non-ferrous metals are promising in terms of content and reserves of useful components compared to the tailings deposits of mining enterprises. Every year, AGMK's processing plants dump tens of millions of tons of tailings rich in Al2O3, Fe2O3, and other valuable components for cement production, which are formed during the processing of lead- and copper-bearing ores.

The article presents the results of research on current issues related to the use of tailings from the lead enrichment and copper smelting plants of the Almalyk Mining and Metallurgical Combine in the production of sulfate-resistant Portland cement as an active mineral additive. It has been shown that additives play an important role in creating strength and forming the structure of cement stone.

АННОТАЦИЯ

В связи с возможностью создания на основе вторичных сырьевых ресурсов и отходов промышленных предприятий производство новых строительных материалов повышенной стойкости в агрессивных средах возникает дальнейшая необходимость систематического исследования и использования их в производстве портландцемента. В этом плане перспективными по содержанию и запасам полезных компонентов по сравнению с месторождениями-отвалами горнодобывающих предприятий являются хвосты обогащения руд черных и цветных металлов. На обогатительных фабриках АГМК ежегодно в отвалы выбрасываются десятки миллионов тонн «хвостов», богатых Al2О3, Fе2О3 и др., которые являются ценными компонентами для производства цемента, образующихся при обогащении свинец- и медьсодержащих руд. В статье представлены результаты исследования по актуальным проблемам использования отвальных «хвостов» свинцово обогатительной и медеплавильной фабрик Алмалыкского горно металлургического комбината в производстве сульфатостойкого портландцемента в качестве активной минеральной добавки. Показано, что добавки играют важную роль в создании прочности и формировании структуры цементного камня.

 

Keywords: sulfate-resistant cement, industrial waste, mechanical strength, hydration activity, sulfate resistance, hydration, bound water.

Ключевые слова: сульфатостойкий цемент, техногенные отходы, механическая прочность, гидратационная активность, сульфатостойкость, гидратация, связанная вода.

 

Introduction

Currently, scientific research is being conducted worldwide to develop ingredients and compositions that improve the construction and technical properties of cement, create highly efficient energy- and resource-saving technologies, and improve their performance characteristics. The existing scientific basis for obtaining highly efficient sulfate-resistant cements using secondary resources from various industries has been developed. The possibility of using secondary waste from ferrous and non-ferrous metallurgy as active additives to Portland cement is being analyzed, and the influence of the mineralogical composition of clinker on the phase composition and properties of products in the presence of man-made additives is being studied.

The influence of the mineralogical composition of Portland cement clinker on the corrosion resistance of cement stone in aggressive environments has been studied in scientific works by Moskvin V.M., Kravchenko V.N., Kuznetsova T.V., and many scientists from abroad and the CIS [1,2,3,4,5,6,7,8,].

The high mineralization of surface and groundwater in a number of regions of our country has always required the use of corrosion-resistant Portland cements for the construction of hydraulic engineering and irrigation structures [1].

Research objects and methods

The objects of research are waste products from the enrichment of copper-containing ores at AGMK. The need to search for new additives is due to the selective nature of their modifying effect, which depends not only on the chemical composition of the additives, but also on the chemical and mineralogical composition of the cement, the fineness of its grinding, etc. At the same time, the process of forming the solid phase state of the cement system should be taken into account. The additives were studied using physicochemical analysis methods: Determination of qualitative and quantitative composition: X-ray phase analysis (XPA) (ARL X'TRA diffractometer), processing of diffractometric data was performed automatically using the PDWin 4.0 computer program; X-ray fluorescence analysis (VRA-30, Carl Zeiss Yena); differential thermal analysis (Paulik-Paulik 3M derivatograph);

Research results and discussion

The following were used for the study: flotation tailings from the AGMK copper enrichment plant.

Additives for cements, concretes, and building mortars in accordance with GOST 24211-2003 are understood to be various products added to cement and concrete mortar mixtures in order to improve their technological properties, enhance the construction and technological properties of concretes and mortars, and give them new properties [4]. The need to search for new additives is due to the selective nature of their modifying effect, which depends not only on the chemical composition of the additives, but also on the chemical and mineralogical composition of the cement, the fineness of its grinding, etc. The magnitude of the modifying effect of many additives also depends on the content and type of mineral additives and the water-cement ratio. In this case, the process of forming the solid phase state of the cement system should be taken into account. When studying copper concentrate waste using wave-dispersive X-ray fluorescence spectrometry elemental analysis (Fig. 1), the chemical composition shown in Table 1 was identified.

Table 1.

Results of a complete chemical analysis of copper concentrate waste from an enrichment plant

Oxides and elements 

Composition, %

Oxides and elements 

Composition, %

SiO2

67,3

SSO3

0,41

Fetotal

8,69

SO2

0,90

Fe2O3

8,83

P2O5

0,17

FeO

3,23

±H2O

0,49

TiO2

0,36

Cu

0,11

MnO

0,08

Pb

0,018

A12O3

11,57

Zn

0,026

CaO

1,30

As

0,0028

MgO

1,97

Sb

-

K2O

4,27

Mo

0,0030


 

Quantitative assessment of the SiO2 and H2O mineral content in the samples showed that the composition of the system corresponds to the formulas of the minerals according to X-ray fluorescence and differential thermal analysis data (Fig. 1, Fig. 2). The main mineral components of the waste studied are quartz (up to 44%), feldspar (up to 9%), hydromica (up to 22%), as well as about 3% gypsum, calcium and magnesium carbonates, and a residual copper content in the waste after ore enrichment of 0.11%.

 

Figure 1. Wave-dispersive X-ray fluorescence spectrometric elemental analysis of MOF

 

The X-ray diffraction pattern of the initial MOF samples clearly shows the presence of quartz (d = 0.335; 0.252; 0.244; 0.213; 0.200; 0.182; 0.167; 0.154 nm) and hydromica (d = 0.441; 0.250; 0.148 nm). feldspar with d = 0.320, 0.252, 0.212 nm; X-ray phase and electron microscopic data have determined the multiphase nature of the additives and the presence of the main phases in the form of quartz, feldspars, hydromicas, polyaclas, and gypsum. bserved. The differential thermal analysis method has determined the temperature intervals for the dehydration process, when physically bound moisture is released at a temperature of 125-145 °C. Constitutional moisture is released at a temperature of 610-650 °C, and the intensity of the endothermic effect decreases due to a reduction in the amount of minerals such as micas and hydromicas contained in them.

 

Decarbonization of the carbonate component of flotation waste occurs in the temperature range of 810-850°C.

Figure 2. Differential thermal curves of copper flotation AGMK

 

Based on the above data, it can be concluded that the addition of SOF and MOF to Portland cements of different mineralogical compositions significantly increases their sulfate resistance. The increase in sulfate resistance of cements due to the addition of SOF and MOF can be explained by changes in the structure of the cement stone.

Conclusions. A series of studies was conducted on lead and copper tailings, the results of which indicate the consistency of their main components and the possibility of using tailings as a mineral additive in cement production. The experiments confirm the important role of the mineralogical composition and activity of the matrix Portland cement clinker in the production of cements with SOF and MOF additives.

 

References:

  1. Isakhodzhaev B.A., Khojaev N.T. Mineral resources of the Republic of Uzbekistan for the production of composite materials / Composite materials. – Vol. No. 3. 2003. – Pp. 58-60.
  2. Kantsopolsky I.S., Pulatov Z.P., Dyatlov I.P. Portland cement for hydraulic structures. – T.: Fan, 1974. -405 p.
  3. Moskvin V.M., Ivanov F.M. et al. Corrosion of concrete and reinforced concrete, methods of protection. –M.: Stroyizdat, 1980. -384 p.
  4. Kuznetsova T.V., Atakuziev T.A., Iskandarova M. Use of high-iron waste from non-ferrous metallurgy as an additive to non-ferrous sulfo-cements. Tashkent, 1984.
  5. Klassen V.K. Technogenic materials in cement production. Monograph by V.K. Klassen, I.N. Borisov, V.E. Manuilov, edited by V.K. Klassen. - Belgorod, BSTU Publishing House, 2008. -126 p.
  6. Ezziane K., Kadri E.H., Hallal A., Duval R. Effect of mineral additives on setting of blended cement by the maturity method // Mater. And Struct. N.:2010, - Vol. 43. – pp. 393-401.
  7. Mulenga D.M., Nobst P., Stark J. Sulfatbestandigkeit von Zementen mit Kalksteinmehl- und Flugaschezusatz // Ibausil: Internationale Baustoffagung, Weimar, 20.-23. Sept, 2000. –C.1/1195-1/1208.
  8. MukhamedbaevaZ.A., Aliyeva R.A., Olimova N.G. Synthesis of portland cement clinker based on diabases of the balpantau deposit //Results of National Scientific Research International Journal SJIF- 5.8, 2025. Volume 4- pp 222-230.
Информация об авторах

Doctor of Technical Sciences, Professor of Chemical Technologies, Yangier branch of the Tashkent Institute of Chemical Technology, Republic of Uzbekistan, Yangier

д-р техн. наук профессор Химические технологии» Янгиерского филиала Ташкентского химико-технологического института, Республика Узбекистан, г. Янгиер

Assistant of the Department of Chemical Technologies of the Yangiyer branch of the Tashkent Chemical-Technological Institute, Republic of Uzbekistan, Yangiyer

ассистент кафедры «Химические технологии» Янгиерского филиала Ташкентского химико-технологического института, Республика Узбекистан, г. Янгиер

Associate Professor of the Department of Construction Materials Technology, Jizzakh Polytechnic Institute, Republic of Uzbekistan, Jizzakh

доцент кафедры «Технологии строительных материалов» Джизакского политехнического института, Republic of Uzbekistan, Jizzakh

Associate Professor of the Department of Chemical Technologies of the Yangiyer branch of the Tashkent Chemical-Technological Institute, Republik of Uzbekistan, Yangiyer

доц. кафедры Химические технологии Янгиерского филиала Ташкентского химико- технологического института, Республика Узбекистан, г. Янгиер

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Звездина Марина Юрьевна.
Top