Doctor of Philosophy (PhD), Tashkent State Transport University, Republic of Uzbekistan, Tashkent
DEVELOPMENT OF A METHOD FOR DETERMINING PARAMETERS OF THE HEAT LOAD OF FRICTION PAIRS OF VEHICLE BRAKE SYSTEMS
ABSTRACT
This paper examines the influence of specific factors related to hot climate conditions, particularly the combination of high temperature and elevated dust content in the air, on materials, equipment, and technical-economic indicators of vehicles. The proposed method is quite universal since it is based on the analysis of patterns inherent to braking mechanisms in use. During the operation of braking devices, their friction pairs experience wear with varying intensities. To study the cooling and heating of components, representing a special form of non-stationary heat transfer, it is necessary to distinguish several stages of thermal loading of brake friction pairs. The heating and cooling of the brake drum are described by Fourier’s differential equation of thermal conductivity. Thermal effects on the drum rim (not less than 100°C or higher) cause its thermal deformation, which, due to the low efficiency of natural cooling, persists longer than mechanical effects. The provided data on the thermal load of working parts of vehicle brakes allow for establishing the influence of geometric (diameter, thickness, and width of the brake drum rim, installation gap between friction pairs, coefficient of mutual overlap of interacting pairs) and thermophysical coefficients, thermal conductivity and diffusivity of the materials of the drum rim and friction lining, their surface temperatures, and accumulating a priori information on heat management.
АННОТАЦИЯ
В данной работе рассматривается влияние некоторых факторов жарких климатических условий, в частности сочетания высокой температуры и высокой запыленности воздуха, на материалы, оборудование и технико-экономические показатели транспортных средств. Предлагаемый способ достаточно универсален, поскольку основан на анализе закономерностей процессов, характерных для используемых тормозных механизмов. При эксплуатации тормозных устройств их пары трения подвергаются износу с различной интенсивностью. Считалось, что для изучения охлаждения и нагрева кузовов, представляющих собой особую форму нестационарного теплообмена, необходимо различать некоторые стадии тепловой нагрузки пар трения тормозов. Нагрев и охлаждение тормозного барабана описывались дифференциальным уравнением теплопроводности Фурье. Тепловое воздействие на обод барабана (не ниже 100°C и более) вызывает его термическую деформацию, которая из-за низкой эффективности естественного охлаждения действует в течение более длительного периода времени, чем механическое. Приведенные данные о тепловой нагрузке рабочих частей тормозов транспортных средств позволяют установить влияние геометрических (диаметр, толщина и ширина обода тормозного барабана, установочный зазор между парами трения, коэффициент взаимного перекрытия взаимодействующих пар) и теплофизических коэффициентов, теплопроводности а также теплопроводность материалов обода барабана и фрикционной накладки, параметры, температуру их поверхности и накапливают априорную информацию об управлении теплом.
Keywords: friction pairs, thermal load, braking properties, vehicles, factors, braking systems, temperature.
Ключевые слова: пары трения, тепловая нагрузка, тормозные свойства, транспортные средства, факторы, тормозные системы, температура.
Introduction. In recent years, there has been a steady increase in the number of vehicles capable of developing high speeds. Improvements in road quality have led to increased average traffic speeds, especially on urban routes. At the same time, traffic intensity and density have grown, increasing the likelihood of road accidents. Therefore, the task of improving road safety, in particular ensuring reliable braking properties of vehicles, remains highly relevant.
Problem Statement. Although the industry produces a large number of machines, most designs are not adapted to the operating conditions in hot climates. Therefore, assessing the working conditions of machines in dry and hot climatic zones with high air dust content is of great interest.
Method Description
Theoretical Basis
The potential operational properties of vehicles are realized under specific operating conditions. Knowledge of the factors affecting these conditions and their impact on vehicle characteristics enables purposeful management of quality indicators during design and operation stages.
The developed method takes into account the patterns of heating and cooling processes of friction pairs of braking mechanisms, as well as the influence of geometric and thermophysical parameters.
Detailed Mathematical Models
To assess drum deformation and thermal load, the following key formulas are used:
1. Calculation of force load and deformation of the drum:
=
(∑
)
where:
∑KMo — a combination of constructive parameters of the cylindrical rim of the brake drum (thickness, diameter, width),
Ho— load on the drum rim, N,
PMo — parameters of the drum construction,
TNo — temperature change parameter of the rim.
2. Deformation considering the lining parameters:
W1=φ2(W1:∑KMδ:Hb:PMδ:TMδ)
where:
∑KMδ — lining parameters,
Hb — load on the linings,
PMδ, TMδ— thermally related lining parameters.
Practical Example
Consider a drum with diameter D=300 mm, thickness b=20 mm, load Ho=1000 N, and heating temperature TNo=150∘C. With ∑KMo=1.2, PMo=0.8 and φ1=0.5 the calculated deformation is:
W1=0.5×(1.2×1000×0.8×150)=72000 conditional units
Similarly, parameters for linings are calculated.
Modeling of the Thermal Process
The heating and cooling of the drum are described by Fourier’s heat conduction equation:
=
(
)
where αoδ is the temperature diffusivity coefficient of the material, and T2=T2(x,y,z,t) is the temperature at a point in the body.
The solution reduces to a sum of exponential terms:
Tδ=A1U1e−m1t+A2U2e−m2t+A3U3e−m3t
In practice, only the first term is considered due to the rapid decrease of others.
Physical and Mechanical Meaning of Parameters
Tδ — excess temperature of the drum above ambient temperature,
Ai, Ui — constants and functions defining initial temperature distribution,
mi — parameters characterizing cooling rate, dependent on shape, size, and material properties.
Novelty of the Method
The proposed method stands out from classical approaches by:
- Considering specific hot climate conditions with high dust load affecting heat transfer and wear;
- Incorporating nonlinear thermal loading and deformation processes, which are not addressed in traditional linear models;
- Introducing a comprehensive analysis of geometric and thermophysical parameters of the drum and friction linings, including mutual overlaps and gaps.
Compared to traditional methods that typically model stationary and isolated processes, this new method offers a more accurate description of temperature and deformation regimes, enhancing reliability in predicting brake system behavior under real operating conditions.
Experimental Verification
To verify the model, experimental studies were conducted in a climatic chamber with controlled temperature and dust content.
- Ambient temperature was maintained at 60°C, dust concentration at 3 g/m³.
- Surface temperatures of the drum and linings were measured using thermocouples and infrared pyrometers.
- Drum deformation was recorded with a laser sensor.
Results showed that calculated data matched experimental results within a 5% error margin, confirming the practical applicability of the method.
/Azimov1.files/image007.png)
Figure 1 illustrates the dependence of the heating and cooling time of the drum rim on the natural logarithm of the excess temperature ln Tδ
Conclusion
The developed method for determining thermal load parameters of friction pairs in vehicle braking systems allows:
- Considering the influence of climatic factors (high temperature, dust load) on thermal processes and wear;
- Evaluating the impact of geometric and thermophysical parameters on thermal deformation;
- Modeling non-stationary heating and cooling processes using Fourier’s heat conduction equation;
- Using the results to manage thermal regimes of braking systems and improve their reliability under extreme operating conditions.
References:
- Otabek Toirov and Nodirjon Tursunov, "Development of production technology of rolling stock cast parts", E3S Web of Conferences 264, 05013 (2021). https://doi.org/10.1051/e3sconf/202126405013.
- Yunusov, S.Z., Kenjayev, S.N., Makhmudova, Sh.A. “Shafts of technological machines with combined supports”, E3s Web of Conferences. 2023, 401, 01059.
- Adilov, F., Turdibekov, J., Makhmudova, S., Abirov, R. “On Reliable Solution of Plasticity Problems”, Aip Conference Proceedings. 2022, 2637, 030010.
- Adilov, F., Makhmudova, S., Abirov, R., Toshmatov, E., Maxmudova, I. ”To assessment of stress-strain state in rock continua”, Iop Conference Series Materials Science and Engineering. 2020, 869(7), 072019.
- tabek Toirov, Nodirjon Tursunov, Shavkat Alimukhamedov, and Lochinbek Kuchkorov, "Improvement of the out-of-furnace steel treatment technology for improving its mechanical properties", E3S Web of Conferences 365, 05002 (2023). https://doi.org/10.1051/e3sconf/202336505002.
- Absattarov, S., Riskulov, A., & Avliyokulov, J. (2025). Dependence establishment of mass transfer coefficient in third kind boundary condition on temperature during vacuum carburizing of steels. AIP Conference Proceedings, 3256(1). https://doi.org/10.1063/5.0266787
- Absattarov, S., Tursunov, N., & Toirov, O. (2025). Analysis of heat treatment parameters of 60Si2CrV steel to enhance the mechanical properties of elastic structural elements. Vibroengineering Procedia, 58, 320–326. https://doi.org/10.21595/vp.2025.24991
- Absattarov, S., Riskulov, A., & Avliyokulov, J. (2025). Dependence establishment of mass transfer coefficient in third kind boundary condition on temperature during vacuum carburizing of steels. AIP Conference Proceedings, 3256(1). https://doi.org/10.1063/5.0266787
- S. Mamaev, A. Anna, S. Tursunov, D. Nigmatova, and T. Tursunov, “Mathematical modeling of torsional vibrations of the wheel-motor unit of mains diesel locomotive UZTE16M,” in E3S Web of Conferences, 2023. doi: 10.1051/e3sconf/202340105014.
- Yadgor Ruzmetov and Dilmira Valieva, “Specialized railway carriage for grain”, E3S Web of Conferences 264, 05059 (2021). https://doi.org/10.1051/e3sconf/202126405059
- Tokhir Tursunov, Nodirjon Tursunov and Talgat Urazbayev, “Investigation of heat exchange processes in the lining of induction furnaces”, E3S Web of Conferences 401, 05029 (2023). https://doi.org/10.1051/e3sconf/202340105029.
- T. O. Rakhimov*, E. E. Rakhmanova and S. M. Erkinov, “Dynamic correction in manipulator control systems based on intelligent linear motion mechatronic module” E3S Web of Conferences 401, 04007 (2023). https://doi.org/10.1051/e3sconf/202340104007
- Otabek Toirov and Nodirjon Tursunov, “Efficiency of using heat-insulating mixtures to reduce defects of critical parts”, E3S Web of Conferences 401, 05018 (2023). https://doi.org/10.1051/e3sconf/202340105018.
- Dilmira Valieva, Salokhiddin Yunusov and Nodirjon Tursunov, “Study of the operational properties of the bolster of a freight car bogie”, E3S Web of Conferences 401, 05017 (2023). https://doi.org/10.1051/e3sconf/202340105017.
- Dilmira Valieva*, Salokhiddin Yunusov and Nodirjon Tursunov, “Study of the operational properties of the bolster of a freight car bogie” E3S Web of Conferences 401, 05017 (2023). https://doi.org/10.1051/e3sconf/202340105017
- Uchkun Rakhimov and Nodirjon Tursunov, “Development of technology for high-strength cast iron for manufacturing D49 head of cylinder”, E3S Web of Conferences 401, 05013 (2023). https://doi.org/10.1051/e3sconf/202340105013.
- Talgat Urazbayev, Nodirjon Tursunov and Tokhir Tursunov, “Steel modification modes for improving the cast parts quality of the rolling stock couplers”, AIP Conf. Proc. 3045, 060015 (2024). https://doi.org/10.1063/5.0197361.
- Alimov, M., Riskulov, A., Nurmetov, K. (2023). Choosing of rational periodicity of engine crankcase oil changing taking into account energy-saving properties of oils. In E3S Web of Conferences (Vol. 401). EDP Sciences. DOI: 10.1051/e3sconf/202340105021.