ВЛИЯНИЕ ТОЛЩИНЫ СТЕНКИ ДУЛЬЦА ГИЛЬЗ ДЛЯ СПОРТИВНЫХ ПАТРОНОВ НА УСИЛИЕ ПОСАДКИ ПУЛИ

EFFECT OF THE THICKNESS OF THE WALL OF THE SPORTING CHARGES ON THE PRESSURE OF THE BULLET
Цитировать:
Богословский В.Н., Жуков И.Г. ВЛИЯНИЕ ТОЛЩИНЫ СТЕНКИ ДУЛЬЦА ГИЛЬЗ ДЛЯ СПОРТИВНЫХ ПАТРОНОВ НА УСИЛИЕ ПОСАДКИ ПУЛИ // Universum: технические науки : электрон. научн. журн. 2025. 7(136). URL: https://7universum.com/ru/tech/archive/item/20573 (дата обращения: 05.12.2025).
Прочитать статью:
DOI - 10.32743/UniTech.2025.136.7.20573

 

АННОТАЦИЯ

В статье приведены расчетные и экспериментальные данные о влиянии разброса в толщине стенки гильзы для спортивных патронов на разброс усилия посадки пули для гильз в калибре 6PPC, применяемом в спортивной дисциплине benchrest, и в калибре .308 Win. Установлено, что от цикла к циклу даже идеально подготовленные гильзы становятся разными по длине и толщине, приобретают разностенность и разный наклеп. Это приводит к увеличению разброса усилия посадки пули. Для гильз в калибре .308 Lapua, проточенных на равностенность с толщиной 0,01310, после нескольких циклов дульца гильз утончились в среднем до толщины 0,12940, при этом средняя толщина находилась в диапазоне 0,01285–0,01305, то есть, разница в толщине составляла 0,0002. Появление разницы в средней толщине гильз на 0,0002 дюйма приводило к увеличению разброса в усилии посадки пули на 10–14 фунтов, что вносило существенный вклад (до 50%) в общий разброс усилия посадки пули. Статья полезна спортсменам, занимающимся стрелковым спортом, а также всем любителям высокоточной стрельбы из нарезного оружия. Работа выполнена в интересах спортивного стрелкового сообщества по инициативе и на собственные средства авторов на основе открытых источников информации.

ABSTRACT

The article presents calculated and experimental data on the effect of the variation in the wall thickness of the cartridge case on the variation in the bullet landing force for cartridges in the 6PPC caliber, which is used in the benchrest sports discipline, and in the .308 Win caliber, which is often used in the F-class discipline.

It has been established that from cycle to cycle, even perfectly prepared cartridge cases become different in length and thickness, acquire different wall thicknesses and different work hardening. This leads to an increase in the spread of the bullet seating force. For cartridge cases in caliber After several cycles, the 308 Lapua cartridges, which had a wall thickness of 0.01305–0.01310, became thinner on average to a thickness of 0.1294, with an average thickness range of 0.01285–0.01305, which means that the difference in thickness was 0.0002.

A difference in the average thickness of the cartridge cases of 0.0002 inches resulted in an increase of 10 to 14 pounds in the spread of the bullet landing force, which contributed significantly (up to 50%) to the overall spread of the bullet landing force. This article is useful for athletes who practice shooting sports, as well as for all fans of high-precision shooting with rifled weapons.

The work was carried out in the interests of the sports shooting community at the initiative and at the expense of the authors, based on open sources of information.

 

Ключевые слова: усилие посадки пули, кучность, толщина стенки дульца гильзы, диаметр дульца, натяг, бушинг.

Keywords: bullet landing force, accuracy, diameter and wall thickness of the cartridge case mouth, tightness, and bushings.

 

Введение

В высокоточной стрельбе (PRS, benchrest, F-class, long range) для повышения кучности спортсмены самостоятельно снаряжают патроны [1]. Новые гильзы в указанных спортивных дисциплинах стремятся сделать максимально одинаковыми в партии. Для этого их сортируют по массе и внутреннему объему, протачивают на равностенность и равную толщину их дульца, подрезают по длине [3]. Однако от цикла к циклу латунное дульце течет, получает наклеп, и в партии гильз они становятся разными по длине, толщине, равностенности, состоянию металла и внутренней поверхности. По длине их в процессе эксплуатации подрезают, начиная от 3 циклов [3]. Внутреннюю поверхность дульца пытаются сделать одинаковой, используя чистку, мойку, полировку, смазку. Свойства металла корректируют отжигом. Однако с растущей разницей в толщине и неравностенности уже практически ничего не сделать. Это начинает увеличивать разброс усилия страгивания пули при выстреле и снижать кучность [2].

Поскольку измерение усилия страгивания пули при стрельбе можно сделать только в специальных сложных экспериментах, его заменяют измерением усилия страгивания в стационарных условиях или измерением усилия посадки пули, считая, что они связаны.  Кроме того, сама по себе стабильность усилия посадки пули является признаком качества подготовки дульца гильз.

Целью исследований являлась разработка рекомендаций по предельному количеству циклов, после которых партия гильз становится непригодной для высокоточной стрельбы из-за возникшей в процессе эксплуатации гильзы разницы в толщине стенки дульца гильз.

Задачей исследований являлась оценка влияния разницы в толщине дульца гильз на разброс усилия посадки пули.

Материалы и методы.

Для исследований влияния разной толщины и неравностенности дульца гильз на усилие посадки пули были применены микрометр фирмы Mitutoyo с точностью до 5 знаков после запятой, цифровой микроскоп Levenhuk DTX 30, AMP Press производителя Annealing Made Perfect (AMP) с выводом на экран компьютера графиков усилия посадки пули, а также оборудование для подготовки гильз и снаряжения патронов (точилка Дона Нильсона, пресс Lenzi, матрицы Wilson и др.). Отстрел собранных спортивных патронов осуществлялся винтовками ВАТ в калибре 6РРС и Blaser R8 в калибре .308 Winchester. Для обработки статистической информации использовалась программа для работы с электронными таблицами Excel. Расчеты зависимости усилия посадки пули от толщины стенки и неравностенности дульца гильзы при различных значениях натяга, а также моделирование процесса страгивания, выхода пули из дульца и прохождения пульного входа осуществлялись с применением программного комплекса Python [7].

Результаты и обсуждение.

На рис. 1 приведена эволюция усилия посадки пули Berger Match 65 gr в дульце гильзы 220 rus Lapua в калибре 6РРС. Новые гильзы были идеально проточены на равностенность и одинаковую толщину точилкой Дона Нильсона, и практически все имели равную толщину дульца 0,01150 с точностью до пятого знака после запятой на микрометре Mitutoyo. Посадка пуль в гильзы каждый цикл проводилась на оборудовании AMP Press с контролем усилия посадки.

 Разброс усилия посадки пули в первых циклах был минимальным (рис. 1а, вертикальная шкала в фунтах, 1 фунт = 0,454 кг, горизонтальная шкала в дюймах, 1 дюйм = 25,4 мм). Однако в каждом следующем цикле разброс усилия посадки увеличивался (рис. 1 б, в, г, д). Дульца становились разной длины и несколько раз подрезались по длине. К двенадцатому циклу у гильз появилась заметная неравностенность с предельными значениями в партии 0,01125–0,01150, или 0,00025 дюйма. Средняя толщина стенки дульца, определенная по результатам замера толщины стенки дульца в шести точках, также оказалась разной, в диапазоне 0,01130–0,01145, предельная разница составила 0,00015 дюймов.

 

 Изображение выглядит как диаграмма, График, линия

Содержимое, созданное искусственным интеллектом, может быть неверным.   Изображение выглядит как диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.   Изображение выглядит как рисунок, зарисовка, искусство

Содержимое, созданное искусственным интеллектом, может быть неверным.  Изображение выглядит как зарисовка, рисунок, диаграмма, Детское искусство

Содержимое, созданное искусственным интеллектом, может быть неверным.   Изображение выглядит как диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.

   а                                       б                                      в                                        г                                д

Рисунок 1. Изменение разброса усилия посадки пули от цикла к циклу

 

Соответственно, от цикла к циклу постепенно снижалась техническая кучность комплекса «винтовка+патрон» с 0,05–0,1 до 0,1–0,2 МОА.

Калибр 6РРС подходит для исследования влияния различных факторов на кучность, поскольку обеспечивает экстремальную кучность и позволяет отделять техническую кучность комплекса «винтовка+патрон» от влияния на нее других факторов, но он не является распространенным в России. Поэтому мы привели данные на рис. 1 в качестве примера изменения разброса усилия посадки пули от цикла к циклу и его влияния на кучность, и дальнейшие исследования провели на гильзах Lapua в более распространенном калибре .308 Winchester.

Для исследований были взяты стреляные гильзы в количестве около 100 штук, подготовленные в свое время как одна партия. Обычно новые гильзы Lapua в этом калибре у нас имели неравностенность до проточки дульца примерно в диапазоне 0,0145–0,0155 и протачивались на равностенность с толщиной стенки дульца 0,01400. Эта партия гильз была проточена на равностенность с толщиной дульца 0,01310. Гильзы использовались для стрельбы из винтовки с широкой шеей патронника и после стрельбы имели диаметр дульца 0,344, поэтому для снижения деформации дульца они предварительно обжимались бушингами 337 и 335, и только потом бушингами для рабочего натяга.

Из всех гильз этой партии в случайной последовательности были отобраны 40 штук и рассортированы по 10 штук. Они были обжаты бушингами 330, 331, 332, 333, и на устройстве AMP Press определены значения усилия посадки пули для каждой из четырех групп, средние значения которых по 10 опытам составили 82,6, 72,5, 54 и 27 фунтов (рис. 2).

 

Изображение выглядит как линия, График, текст, диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.

Рисунок 2. Зависимость средних значений усилия посадки пули от диаметра дульца гильзы

 

Поскольку внешние диаметры дульца гильз соответствовали номерам бушингов, график изменения усилия посадки пули на рис. 2 был построен в зависимости от значений внешних диаметров дульца гильз 0,330, 0,331, 0,332, 0,333.

Участвующие в исследовании 40 гильз были депулированы, расширены мандрелом и снова обжаты бушингом 332. Другая группа гильз, которая не участвовала в исследовании, также была обжата бушингом 332. Каждая гильза в каждой из двух групп партии гильз после обжатия бушингом 332 была измерена в шести точках на разностенность, которая оказалась в пределах 0,01270–0,01310. По результатам измерений была рассчитана средняя толщина стенки дульца каждой гильзы, диапазон составил 0,01285–0,01305, средняя толщина составила 0,01294.  После этого на прессе AMP в обе группы гильз были посажены пули Lapua Scenar 175 gr с измерением соответствующего толщинам стенки дульца усилия посадки в каждой группе (рис. 3).

 

Изображение выглядит как диаграмма, зарисовка

Содержимое, созданное искусственным интеллектом, может быть неверным.     Изображение выглядит как диаграмма, линия, График

Содержимое, созданное искусственным интеллектом, может быть неверным. 

Рисунок 3. Графики усилия посадки пули в двух группах стреляных гильз в калибре .308 Lapua

 

Пучки графиков усилия посадки пули в обеих группах оказались очень сходными с небольшими отличиями и смещением средних значений, отличие было естественно, так как внутренняя поверхность и материал дульца в исследованной группе подвергались дополнительным воздействиям - обжиму разными бушингами, посадке пули, депулированию, расширению мандрелом и снова обжиму бушингом 332, а вторая группа просто была обжата бушингом 332.

По этим данным были построены статистические диаграммы, которые связывают пары значений средней толщины стенки дульца и максимального усилия посадки пули (рис. 4).

Для обеих групп гильз прослеживается примерно одинаковый тренд: усилия посадки пули статистически растет при росте толщины стенок дульца, при этом регрессионные модели, построенные на всех исходных точках данных, очень близки для обеих групп. Изменение толщины стенки дульца на 0,0002 дюйма приводит к увеличению усилия посадки для первой группы на 14,4 фунта, а для второй группы на 14,9 фунтов.

Однако отклонение многих экспериментальных точек относительно расчетной линии регрессионной зависимости довольно значительное. Если определить расстояние между крайними точками относительно линии зависимости усилия посадки от толщины дульца (оценить остатки, residuals), то оно составляет 15,7–16,6 фунтов, то есть, в сумме примерно столько же, что и от влияния толщины стенки дульца.  Это говорит о значительном влиянии суммы других факторов на усилие посадки пули, кроме разницы в толщине стенок дульца.

 

Изображение выглядит как снимок экрана, линия, текст, диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.Изображение выглядит как снимок экрана, линия, текст, График

Содержимое, созданное искусственным интеллектом, может быть неверным.

Рисунок 4. Статистические диаграммы связи толщины стенки дульца с усилием посадки пули

 

В числе основных факторов, влияющих на усилие посадки пули (кроме разницы в средней толщине гильз, приводящей к разному усилию натяжению дульца, связанному с силой трения), могут быть следующие:

1) неравностенность дульца гильз, приводящая к увеличению разброса усилия посадки пули;

2) состояние внутренней поверхности дульца, изменяющее силу трения между медной оболочкой пули и слоем нагара, окислов или латунной поверхностью дульца (на мытых и полированных гильзах);

3) наклеп, создающий разную упругость при посадке пули и приводящий к различию внешнего диаметра дульца гильз после обжатия одним и тем же бушингом;

4) микронеровности фаски и всей внутренней поверхности дульца, посторонние частицы между оболочкой пули и дульцем;

Кроме факторов, относящихся к гильзе, на усилие посадки пули влияет разница в диаметрах партии пуль. Кроме того, выбор только финального усилия посадки пули из всего графика для исследования связи с толщиной дульца также содержит в себе погрешности из-за значительной нелинейности и непредсказуемости поведения графика посадки пули, обусловленного микронеровностями поверхности, изменением диаметра дульца по его глубине, конусностью, овальностью и эксцентриситетом дульца. 

Поскольку нас интересует только предсказание среднего значения усилия посадки пули при определенной толщине стенки дульца, мы посчитали допустимым для повышения коэффициента детерминации и «очистки» зависимости от постороннего шума усреднить влияние других факторов при одних и тех же значениях толщины стенки дульца [4-6]. Такой прием, конечно, не улучшает корреляцию между толщиной стенки дульца и усилием посадки пули, но позволяет визуально более ясно увидеть картину статистической связи усилия посадки пули с толщиной стенки дульца (рис. 5).

Поскольку при каждом значении аргумента (толщины дульца) у нас присутствует разное количество значений функции (усилия посадки), усреднение данных было произведено с учетом весов, пропорциональных количеству наблюдений в каждой группе данных. Новые взвешенные регрессионные модели, описывающие зависимость среднего значения усилия посадки пули от толщины стенки дульца, представлены на рис. 5.

На графиках рис. 5 изменение средней толщины стенок дульца с 0,01285 до 0,01305 (на 0,0002 дюйма) для бушинга 332 приводит к изменению усилия посадки пули в среднем по двум группам примерно на 15 фунтов. То есть, усилие посадки пули в нашем случае изменяется примерно на 7,5 фунтов при изменении толщины стенки дульца на 0,0001 дюйма.

 

Изображение выглядит как текст, снимок экрана, линия, График

Содержимое, созданное искусственным интеллектом, может быть неверным.    Изображение выглядит как линия, снимок экрана, График, диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.

Рисунок 5. Статистическая связь толщины стенки дульца со средним значением усилия посадки пули

 

Экспериментально определенные точки были взяты в качестве контрольных для корректировки расчетных данных по усилию посадки пули при разных толщинах стенки и внешних диаметрах дульца. В расчетах, проведенных с использованием программного комплекса Python, для оценки усилия посадки пули была использована модель сопротивления растяжению толстостенной трубы из гильзовой латуни С26000 при посадке в нее пули с диаметром цилиндрической части 0,308 дюйма. Расчеты проводились в области упругой и пластической деформации дульца. Усилие посадки пули рассчитывалось как произведение кольцевого напряжения Ϭh на площадь контакта пули с дульцем S и на коэффициент трения µ между медной поверхностью пули и внутренней поверхностью дульца. Описание модели расчета, системы уравнений и исходных данных не включено в данную статью, с ними можно ознакомиться в следующей статье.

Усилие посадки пули было рассчитано при значениях внешнего диаметра дульца 0,330, 0,3305, 0,331, 0,3315, 0,332, 0,3325, 0,333, 0,3335, 0,3338, 0,334, 0,3345, 0,335 и толщины стенки дульца 0,011, 0,01125, 0,0115, 0,01175, 0,012, 0,01225, 0,0125, 0,01275, 0,01294, 0,013, 0,01325, 0,0135, 0,01375, 0,014, 0,0145, 0,15. Диаметр пули в расчетах взят как ровно 0,308, хотя по факту измерений диаметр пуль в партии лежал в пределах 0,30770–0,308, со средним значением 0,30795, о влиянии разброса диаметра пули на усилие посадки ниже.

Полученные зависимости были использованы для оценки влияния разброса толщины стенок дульца гильзы на разброс усилия посадки пули в широком диапазоне их изменения. Значения усилия посадки пули 82,6, 72,5, 54, 27 фунтов при внешних диаметрах дульца 0,330, 0,331, 0,332, 0,333 дюйма и средней толщине 0,01294 дюйма задавались как экспериментально определенные опорные точки (рис. 2). К этим данным было добавлено значение 0, соответствующее диаметру гильзы с нулевым натягом 0,3338.

Средняя толщина дульца рассчитывалась как сумма толщин в шести точках, деленная на количество точек, внутренний диаметр рассчитывался как разница внешнего диаметра и средней толщины дульца, изменение внешнего диаметра при посадке пули рассчитывалось как разница во внешних диаметрах дульца до и после посадки пули, изменение внутреннего диаметра принималось пропорционально изменению внешнего диаметра, средний диаметр по толщине дульца считался как среднее между внешним и внутренним диаметром.

Результаты расчетов приведены на рис. 6 и рис. 7. На рис. 6 представлены зависимости усилия посадки пули от внешнего диаметра дульца при разной толщине стенки дульца. График при толщине стенки дульца 0,01294 является экспериментальным, остальные графики расчетные. Видно, что усилие посадки пули нелинейно зависит от внешнего диаметра дульца (или номера бушинга), поскольку при растяжении латунного дульца на величину больше 0,001–0,0015 дюйма упругая деформация дульца переходит в пластическую.

Через внешний диаметр дульца, толщину стенки дульца и диаметр пули обычно рассчитывают величину натяга. На графике рис. 6 можно оценить соответствующее этому натягу усилие. Например, для бушинга 331, толщины стенки дульца 0,014 и диаметра пули 0,308 натяг будет составлять 0,005 и ему будет соответствовать усилие посадки пули 91,2 фунта (рис. 6, график для толщины стенки дульца 0,014, внешний диаметр 0,331). Это уже достаточно большое усилие посадки пули, которое может привести к деформации пули с мягкой оболочкой.

 

Изображение выглядит как снимок экрана, текст, линия, Красочность

Содержимое, созданное искусственным интеллектом, может быть неверным.

Рисунок 6. Зависимости усилия посадки пули от внешнего диаметра дульца при различной толщине стенки дульца 0,011–0,015

 

Из приведенных графиков можно также определить влияние внешнего диаметра дульца или номера бушинга на усилия посадки пули в заданном диапазоне их изменения. Например, смена бушинга с 331 на 334 при толщине стенки дульца 0,014 и диаметре пули 0,308 приведет к уменьшению усилия посадки пули с 91,2 до 60 фунтов. То есть, изменение натяга с 0,005 до 0,002 снизит усилие посадки пули на 31,2 фунта или на 30%.

На основании исследований и личного практического опыта мы бы рекомендовали для высокоточной стрельбы оптимальное усилие посадки пули для калибра .308 Win выбирать из диапазона 45–65 фунтов, что примерно соответствует традиционно используемому натягу 0,001–0,002.

На рис. 7 представлены диаграммы зависимости усилия посадки пули от толщины стенок дульца при различном внешнем диаметре дульца (различном бушинге).

 

Изображение выглядит как линия, снимок экрана, График, диаграмма

Содержимое, созданное искусственным интеллектом, может быть неверным.

Рисунок 7. Зависимости усилия посадки пули от толщины стенки дульца при различном внешнем диаметре дульца (разных бушингах)

 

По этим графикам можно для заданного внешнего диаметра дульца (номера бушинга) оценить влияние толщины стенки дульца на усилие посадки пули. Например, для заданного внешнего диаметра дульца 0,333 (бушинга 333) увеличение толщины стенки дульца с 0,013 до 0,014 приведет к увеличению усилия посадки пули с 30,5 до 73 фунтов, то есть, на 42,5 фунта или в 2,4 раза.

Таким образом, на основании графиков, приведенных на рис. 6 и рис. 7, можно в широком диапазоне толщины стенки и внешнего диаметра дульца определить их влияние на усилие посадки пули при ее заданном диаметре. Нужно отметить, что для других свойств материалов и других коэффициентов трения графики будут, конечно, другими, однако с помощью контрольных экспериментально определенных точек их можно будет пересчитать на ваши исходные данные.

В соответствии с экспериментами (рис. 4) усилие посадки пули изменялось примерно на 7,5 фунтов при изменении толщины стенки дульца на 0,0001 дюйм. На графике рис. 7 изменение толщины стенки дульца на 0,0001 дюйм в этом диапазоне приводит к изменению усилия посадки пули примерно на 5 фунтов. Это, конечно, уже другой цикл гильз, другие коэффициенты трения и т. п., но, учитывая это, а также влияние многих других факторов и приближенность модели, по которой рассчитывались графики на рис. 6 и 7, совпадение расчетных и экспериментальных данных  с точностью 30% можно считать хорошим результатом, подтверждающим правильность оценок.

Таким образом, и экспериментально, и теоретически установлено значительное влияние толщины стенки дульца на усилие посадки пули в пределах разброса, появляющегося после определенного количества циклов.  При внешнем диаметре дульца 0,332 (номере бушинга 332) диапазон толщины стенки дульца гильз составил 0,01285–0,01305, то есть, 0,0002 дюйма, что приводит к изменению усилия посадки пули на 10–15 фунтов. Учитывая равноценное влияние суммы других факторов, суммарный разброс усилия посадки в этом случае составляет 20–25 фунтов (рис. 4).

Что означает «значительное влияние»? Для сравнения, в разных источниках можно найти данные, что для высокоточной стрельбы разброс усилия посадки пули должен находиться в пределах 1–2 фунта (по величине стандартного отклонения SD), это примерно соответствует диапазону в 5–10 фунтов по крайним значениям данных в партии гильз из 100 штук. Эта разница, являющаяся критичной для высокой кучности, соответствует разнице в толщине гильз в калибре .308 Win больше 0,0001 дюйма и может возникнуть к 7–8 циклу перезарядки.

Как показали измерения, средняя толщина дульца изменяется одновременно с появлением разностенности и наклепа дульца.

По расчетам, возникающая в процессе эксплуатации гильзы разностенность дульца изменяет усилие посадки пули при одной и той же средней толщине стенки дульца. Расчеты, проведенные с использованием программного комплекса Python, показали, что усилие посадки пули при неравностенной гильзе будет на 3–4% меньше, чем при равностенной с такой же средней толщиной за счет того, что дульце в основном тянется с тонкой стороны. Например, усилие посадки пули при равной толщине стенки дульца 0,01300 и внешнем диаметре 0,332 равно 56,3 фунта (рис. 7), а усилие посадки пули при той же средней толщине стенки, но при разностенности тонкой и толстой сторон дульца на 0,0002, с 0,0129 до 0,0131, в среднем также 0,01300, равно 54 фунта. Поэтому неравностенность дульца является так же существенным фактором влияния на разброс усилия посадки пули.

Разный наклеп можно косвенно определить по различию во внешнем диаметре дульца после его обжатия одним и тем же бушингом. Это различие определяется для гильз с одинаковой толщиной стенки дульца только высокоточным микрометром, при измерении штангенциркулем оно не заметно. При разной упругости дульца его обжатие одним и тем же бушингом приведет к тому, что дульце отпружинит по-разному, в результате чего гильзы в партии даже с одинаковой толщиной стенок будут иметь разный внешний диаметр дульца. Замеры дульца микрометром показали, что в нашем случае это различие составляло не менее 0,0001. Из-за фиксируемой точным микрометром небольшой овальности и конусности диаметр дульца пришлось измерять также в разных точках, как и толщину стенки дульца, чтобы определить средние значения. В данных исследованиях измерений свойств дульца твердомером не проводилось, установлен лишь факт разного диаметра дульца в партии гильз после одного и того же бушинга. Не важно, от чего он возник, важнее то, что такой факт установлен и поэтому разный диаметр дульца (возможно, от разного наклепа) также является фактором влияния на разброс усилия посадки пули.

Выходя за рамки исследований, мы также измерили диаметр пули Lapua Scenar 175 gr и определили, что он изменяется в диапазоне 0,30770–0,308, несимметрично группируясь вокруг значения 0,30795. Кроме того, пуля в месте перехода конической и цилиндрической части и посередине цилиндрической части имеет разные размеры. Разница в диаметре пули до 0,0002–0,0003 также может значительно влиять на усилие посадки пули, в результате чего даже идеально подготовленные гильзы будут иметь большой разброс усилия посадки пули в случае разных диаметров пуль в партии.

Заключение.

Из полученных экспериментальных данных и проведенных расчетов следует, что гильзы, изначально даже идеально проточенные на равностенность точилкой Дона Нильсона (с точностью до 5 знака после запятой на микрометре), от цикла к циклу растут по-разному, в итоге у них в партии появляется разностенность и становится разной средняя толщина стенок дульца, что приводит к увеличению разброса усилия посадки пули. Возможно, они также получают разный наклеп, в результате чего обжимаются одним и тем же бушингом на немного разные диаметры (разница заметна только при измерении микрометром), что приводит к еще большему увеличению разброса усилия посадки пули. В итоге разброс усилия посадки пули растет от цикла к циклу, с большой вероятностью приводя к постепенной потере кучности. Хотя точно установить прямую связь разброса усилия посадки с кучностью довольно сложно, тем не менее мы по своим исследованиям и практическому опыту связываем постепенное падение кучности с растущей разницей в размерах и свойствах дульца гильз в партии и с растущим разбросом усилия посадки пули.

Проведенные исследования, литературные данные, а также наш личный практический опыт в стрельбе на кучность позволяют сделать вывод, что после формовки гильзы приходят в рабочее состояние примерно на втором-третьем цикле, а еще примерно через 5–7 циклов у них появляется заметная неравностенность (до 0,0003), разная толщина стенки дульца (до 0,0002) и разные свойства дульца, которые, возможно, проявляются в разных диаметрах дульца после обжатия одним и тем же бушингом. При этом внешне гильзы не отличаются, сохраняют целостность и хорошее усилие посадки капсюля. Отклонение в усилии посадки пули на 5–7  фунтов в обе стороны от номинала для кучности лучше 0,3 МОА мы бы считали критичным, а для экстремальной кучности 0,1–0,2 МОА и выше стремились бы к отклонению не более 1–2 фунтов, в том числе путем сортировки патронов.

В этом контексте можно отметить, что некоторые российские стрелки сообщают о применении гильз до 20 и более циклов перезарядки. С точки зрения целостности гильз и безопасности стрельбы применение гильз с таким сроком жизни возможно, но вряд ли такие гильзы обеспечат необходимую в ответственных соревнованиях высокую кучность.

В заключение также обсудим правомерность контроля качества дульца гильз по усилию посадки пули. Это, конечно, очень косвенный контроль. На выстрел влияет не усилие посадки, а усилие страгивания пули. Процессы посадки и страгивания пули отличаются между собой. При медленной посадке пуля расширяет дульце и сглаживает часть микронеровностей, действуя как мандрел. При динамическом страгивании в течение долей миллисекунды пуля уже изначально испытывает натяжение растянутых и частично отшлифованных стенок дульца, она стартует, преодолевая трение покоя под действием высокого давления, испытывая огромную силу инерции. Момент страгивания и период движения пули в дульце - это достаточно сложный процесс. На микроуровне контакт пули с дульцем не является сплошной средой. Он имеет множество микроканалов, по которым, по расчетам, пороховые газы при высоком давлении проникают между пулей и стенкой дульца еще до ее страгивания, немного расширяя дульце и сильно изменяя коэффициент трения. В результате после страгивания пуля в дульце движется как бы по газовой подушке, цепляясь за множество выступающих из нее микронеровностей внутренней поверхности дульца. При прохождении пульного входа пуля тормозится и в этот период проход газов между пулей и стенкой дульца становится уже заметным. Часть газов проходит в ствол по пока еще открытым сечениям нарезов. Волна пластического расширения дульца до размеров шеи патронника идет вслед за движением донца пули, и основная масса пороховых газов вырывается из гильзы после того, как пуля зашла в пульный вход и «запечатала» их проход в ствол. При начальном положении пули в нарезах на усилие страгивания и движения пули в дульце оказывает дополнительное влияние сопротивление нарезов.

Таким же существенным фактором влияния на кучность, как и разная толщина стенки дульца, является разностенность дульца. Моделирование процесса показывает, что при проникновении между стенкой дульца и пулей пороховые газы растягивают прежде всего тонкую сторону, прижимая пулю к противоположной толстой стороне и создавая несимметричные условия движения пули. 

Тем не менее, несмотря на большое различие движения пули в дульце при ее посадке в гильзу и при выстреле, есть очевидная связь между усилием посадки пули и усилием ее страгивания при выстреле, что позволяет использовать оборудование по измерению усилия посадки пули как средство контроля стабильности и качества дульца гильзы.

ВЫВОДЫ.

  1. Дульца новых гильз, идеально проточенные на равностенность и равную толщину, имеющие одинаковые свойства, показывают минимальный разброс усилия посадки пули, что можно считать свидетельством качественно подготовленного дульца гильзы. Однако от цикла к циклу даже идеально подготовленные гильзы становятся разными по длине и толщине, приобретают разностенность и разный наклеп. Это приводит к увеличению разброса усилия посадки пули.
  2. Установлено, что для гильз в калибре .308 Lapua, проточенных на равностенность 0,01310, после нескольких циклов дульца гильз утончились в среднем до толщины 0,1294, при этом средняя толщина находилась в диапазоне 0,01285–0,01305, то есть, разница в средней толщине составила 0,0002.
  3. Появление разницы в средней толщине гильз на 0,0002 дюйма привела к увеличению разброса в усилии посадки пули на 10–15 фунтов, что внесло существенный вклад (до 50%) в общий разброс усилия посадки пули. Возникающая неравностенность дульца вносит дополнительное влияние в увеличение разброса усилия посадки пули еще на 3–4% от значения равностенных гильз, увеличивая диапазон влияния разной толщины дульца гильз.
  4. Установлено, что разница в толщине гильз в калибре .308 Win больше 0,0001 дюйма является критичной для высокой кучности. Эта разница может возникнуть к 7–8 циклу.
  5. Остальные факторы, включая разные свойства материала гильзы (наклеп), разный внешний диаметр дульца при одном и том же бушинге, разную силу трения между внутренней поверхностью гильзы и пулей, разные диаметры пули, вносят еще не менее 50% вклада в общий разброс усилия посадки пули.
  6. По результатам исследований и практическому опыту из-за возникающей в процессе эксплуатации неравностенности и разной толщины в партии гильзы становятся непригодными для высокоточной стрельбы примерно после двух циклов формовки и 5–7 рабочих циклов.
  7. Если гильзы в партии изначально неравностенные и имеют разную толщину стенки дульца, если пули в партии имеют заметный разброс по диаметру, то значительный разброс усилия посадки пули будет наблюдаться уже с первых циклов.
  8. Оборудование AMP Press и подобное ему по измерению усилия посадки пули может быть использовано как средство контроля стабильности и качества дульца гильзы.

 

Список литературы:

  1. Богословский В.Н., Кадомкин В.В. Метод оценки кучности нарезного гражданского оружия. // Universum: технические науки. - 2022.-№11(104_1). с. 34–46.
  2. Богословский В. Н., Кадомкин В. В., Жуков И. Г. Определение безопасной точки старта по глубине посадки пули при настройке спортивной винтовки на экстремальную кучность. Часть 2. // Universum: технические науки : электрон. научн. журн. 2024. 12(129). URL: https://7universum.com/ru/
  3. tech/archive/item/19017 (дата обращения: 16.07.2025).
  4. Игорь Жуков. «Идеальный выстрел – это просто!» - Москва. Издание «Издательство книг ком». 2023, 416 с
  5. Математическая статистика [Электронный ресурс] URL https://ru.wikipedia.org/wiki (Дата обращения 16.07.2025).
  6. Статистические оценки параметров генеральной совокупности //Высшая математика для заочников и не только. [Электронный ресурс] URL http://mathprofi.ru/matematicheskaya_statistika.html. (Дата обращения: 16.07.2025).
  7. Функция случайных величин. [Электронный ресурс] URL https://studme.org (Дата обращения 16.07.2025).
  8. Программный комплекс Python. [Электронный ресурс] URL https://www.python.org/(Дата обращения 16.07.2025).
Информация об авторах

д-р техн. наук, специалист в области теории принятия решений, прикладной статистики, надежности сложных систем, математического моделирования процессов внутренней баллистики, РФ, г. Москва

Doctor of Technical Sciences, specialist in the field of decision theory, applied statistics and reliability of complex systems, mathematical modeling of internal ballistics processes, Russia, Moscow

двукратный чемпион Европы по бенчресту, РФ, г. Новосибирск

Two-time European Champion, Russia, Novosibirsk

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Звездина Марина Юрьевна.
Top