ISOTHERMS OF THE SYNTHESIZED IONITE FOR Al3+ ION ACCORDING TO LANGMUIR AND FREUNDLICH MODELS

ИЗОТЕРМЫ СИНТЕЗИРОВАННОГО ИОНИТА ДЛЯ ИОНА Al3+ СОГЛАСНО МОДЕЛЯМ ЛЭНГМЮРА И ФРЕЙНДЛИХА
Цитировать:
Jumaeva M.R., Ostonov F.I., Axmedov V.N. ISOTHERMS OF THE SYNTHESIZED IONITE FOR Al3+ ION ACCORDING TO LANGMUIR AND FREUNDLICH MODELS // Universum: технические науки : электрон. научн. журн. 2025. 6(135). URL: https://7universum.com/ru/tech/archive/item/20368 (дата обращения: 05.12.2025).
Прочитать статью:

 

ABSTRACT

In this study, the optimal conditions for synthesizing a copolymer based on crotonaldehyde oligomer and urea were investigated. The resulting copolymer was treated with colloidal silicasol to obtain a hybrid composite, and its sorption properties with respect to aluminum ions were examined. To determine the optimal temperature for the sorption of aluminum ions by the ion-exchange material, experiments were conducted at various temperatures (20 °C, 30 °C, and 40 °C). In order to assess whether the sorption process of aluminum ions by the synthesized ion-exchanger is exothermic or endothermic, the Langmuir and Freundlich isotherm constants were calculated.

АННОТАЦИЯ

В данном научном исследовании были изучены оптимальные условия синтеза сополимера, полученного на основе олигомера кротонового альдегида и мочевины. Полученный сополимер подвергался модификации с использованием коллоидного кремнезоля, в результате чего был получен гибридный композит. Сорбционные свойства данного материала по отношению к ионам алюминия были детально исследованы. Для определения оптимальной температуры сорбции ионов алюминия данным ионитом были проведены опыты при различных температурах (20 °C, 30 °C и 40 °C). С целью установления термодинамического характера процесса сорбции (экзотермический или эндотермический) были рассчитаны константы изотерм Ленгмюра и Фрейндлиха.

 

Keywords: static exchange capacity, adsorption isotherm, urea, croton aldehyde, potassium hydroxide.

Ключевые слова: статическая обменная ёмкость, адсорбционная изотерма, мочевина кротоновый альдегид, гидроксид калия.

 

INTRODUCTION

According to numerous scientific studies conducted by researchers to date, it has been established that anion exchangers are capable of forming complexes with a number of metal ions. However, the fundamental nature of this process has not yet been sufficiently studied or fully explained. Nevertheless, analysis of various scientific sources suggests the idea that anion exchangers can form complexes with metal ions having the following structures: (RNH₂)₂MeX₂, (R₂NH)₂MeX₂, and (R₃N)₂MeX₂. According to the authors, the instability constant of a metal–ammine complex is inversely proportional to its sorption capacity [1-3].

The uptake of metal ions by the resin occurs not only as a result of complex formation, but also through the formation of poorly soluble compounds (such as salts, oxides, and even free metals, provided that reducing agents are present in the system), as well as via physical sorption [1].

Despite the fact that the nature of the sorption phenomenon has not been fully clarified, some researchers have applied it for practical purposes such as the purification of brine from heavy metal mixtures, the separation of cobalt and nickel, and the separation of chromium, iron, and copper from manganese, cobalt, and nickel [5-6].

MATERIALS AND METHODS

Crotonaldehyde was oligomerized at a temperature range of 10–70 °C for 3 hours, resulting in a brownish powder-like oligomer. The obtained oligomer is well soluble in organic solvents such as pyridine, dimethylformamide, acetone, and dimethyl sulfoxide, but insoluble in water. The synthesized oligomers were reacted with urea at a temperature of 20–30 °C. To enhance the mechanical strength of the resulting product, it was treated with colloidal silica sol. The static exchange capacity of the composite with respect to Al³⁺ ions was determined at various temperatures, and based on the obtained data, adsorption isotherms were established [5-6].

The adsorption isotherms of the ion exchanger (Langmuir and Freundlich) were used to characterize the equilibrium adsorption behavior.

The adsorption capacity (AS) of the ion exchanger was calculated using formula I.

AS =                                                                      (I)

Here, Cd is the initial concentration of ions in the solution.

 Cm - the equilibrium concentration of ions in the solution.

mi – mass of the ion exchanger

V- volume of the solution

The linear form of the Freundlich isotherm was calculated using equation (II).

A= KF Cm1/n                                                                      (II)

Here, Amak- is the maximum comparative adsorption, and Cm - is the equilibrium concentration of ions in the solution.

The linear form of this equation is expressed as equation (III).

logA= log KF +(1/n)logCm                                                         (III)

In the equation, KF – is the Freundlich constant, and 1/n -  is the adsorption intensity. The Langmuir isotherm was calculated using equation (IV).

A=                                                                  (IV)

Here, A- is the comparative adsorption,
Amax- is the maximum comparative adsorption,
Cm -  is the equilibrium concentration of ions in the solution,
KL -is the Langmuir constant.

The graphical method was used to determine the constants in the Langmuir equation. For this purpose, the Langmuir formula is expressed as follows:

=  +                                                              (V)

Here, Amak represents the maximum adsorption capacity (mg/g), and KL (l/mg) is the Langmuir isotherm constant, which indicates the affinity between the ions and the ion exchanger in the experiment.
The separation factor RL was calculated using the following equation [4].

RL =                                                                     (VI)

RESULTS AND DISCUSSION

When studying the isotherms of the synthesized ion exchanger according to the Freundlich model, the value of R2 at 40 °C was found to be 0,92, which is higher than the values obtained at other temperatures. The higher R2 value indicates a stronger correlation between the adsorption process and temperature, suggesting that the adsorption of Al³⁺ ions is more efficient at elevated temperatures. The Freundlich constant Kf  was also found to be 3,89 at 40 °C, indicating that the adsorbent exhibits stronger adsorption properties at this temperature.

Analyzing the results obtained according to the Langmuir model shows that as the temperature increases, the value of  Amax also increases correspondingly, indicating that the adsorption process is not exothermic but rather endothermic. With increasing temperature, the Langmuir constant KL also increases, suggesting a stronger interaction between the adsorbent and adsorbate, which is consistent with an endothermic adsorption process. The values of the separation factor RL were found to be in the range of 0.05–0.07, indicating a highly favorable adsorption process.

 

Temperature

1/n

Kf

R2

20 0C

0,14488

3,1295363

0,86699

30 0C

0,14867

3,44572

0,91705

40 0C

0,13882

3,893678

0,92813

 Figure 1. Adsorption isotherms of CA-U-CS ion exchanger for Al3+ ions according to the Freundlich model at: 1-20 0C, 2-30 0C, 3-40 0C

 

Temperature

Amax

KL

RL

R2

20 0C

6,538084

0,239433

0,077091

0,70806

30 0C

7,218653

0,272124

0,068464

0,65188

40 0C

7,68935

0,3357

0,056227

0,60734

 Figure 2. Langmuir isotherms of the CA-U-CS  ion exchanger for Al³⁺ ions. 1-20 0C, 2-30 0C, 3-40 0C.

 

CONCLUSION

In conclusion, the synthesized ion exchanger exhibits the ability to sorb aluminum ions, and it was determined that the sorption process is endothermic in nature. The optimal temperature for aluminum ion sorption was concluded to be 40 °C based on the evaluation of Freundlich and Langmuir isotherm constants.

However, the coefficient of determination R2 in the Langmuir model was below 0,7 showing that the Langmuir model does not fit the experimental data well. Therefore, it was concluded that the adsorption of Al³⁺ ions by the synthesized ion exchanger is better described by the Freundlich model.

 

References:

  1. Дегтярик М. М. и др. Синтез и строение комплексных соединений некоторых 3D-металлов с 1-(1, 2, 4-триазол-3-ил) тетразолом //Вестник БГУ. Серия 2: Химия. Биология. География. – 2013. – №. 2. – С. 3-12.
  2. Temirova S. F. Mochevina-formaldegid va epoksid smolalari asosida yelimlar tayyorlash //Новости образования: исследование в XXI веке. – 2024. – Т. 2. – №. 20. – С. 694-700.
  3. Эшкурбонов Ф. Б. и др. Исследование сорбции некоторых металлов на синтезированных комплексообразующих ионитах //Universum: химия и биология. – 2018. – №. 5 (47). – С. 7-7.
  4. Ayub A, Raza ZA, Majeed MI, Tariq MR, Irfan A. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int J Biol Macromol. 2020 Nov 15;163:603-617. doi: 10.1016/j.ijbiomac.2020.06.287. Epub 2020 Jul 3. PMID: 32629050.
  5. Власова Н. Н. и др. Кремнийорганические ионообменные и комплексообразующие сорбенты //Успехи химии. – 2013. – Т. 82. – №. 5. – С. 449-464.
  6. Ostonov F.I., Akhmedov V.N. Synthesis of ionites based on cremnisole // Universum: технические науки : электрон. научн. журн. 2022. 4(97).
Информация об авторах

Independent Researcher in Chemical Technology, Bukhara State Technical University, Uzbekistan, Bukhara

соискатель кафедры химической технологии, Бухарский государственный технический университет, Узбекистан, г. Бухара

Associate Professor of Chemical Technology, Bukhara State Technical University, Uzbekistan, Bukhara

доцент кафедры химической технологии, Бухарский государственный технический университет, Узбекистан, г. Бухара

Professor of Chemical Technology, Bukhara State Technical University, Uzbekistan, Bukhara

профессор кафедры химической технологии, Бухарский государственный технический университет, Узбекистан, г. Бухара

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Звездина Марина Юрьевна.
Top