Associate professor of “Metallurgy” department, PhD, Almalyk branch of Tashkent State Technical University, Uzbekistan, Almalyk
TECHNOLOGICAL FEASIBILITY OF PRODUCING BASALT FIBER FROM ELECTRIC ARC FURNACE SLAG AND FERROSILICON DUST
ABSTRACT
This study explores the potential of utilizing metallurgical waste—specifically electric arc furnace slag and ferrosilicon dust—as alternative raw materials for basalt fiber production. Through comparative chemical analysis, the oxide compositions of various metallurgical by-products were evaluated against natural basalt. The optimal blend (86.19% slag, 13.81% dust) closely matched basalt composition, demonstrating technical feasibility. The findings highlight a sustainable approach to waste utilization, reduce environmental impact, and offer an economically viable substitute for conventional basalt mining, contributing to circular economy principles and industrial sustainability in Uzbekistan.
АННОТАЦИЯ
В этом исследовании изучается потенциал использования металлургических отходов, в частности шлака электродуговых печей и пыли ферросилиция, в качестве альтернативного сырья для производства базальтового волокна. С помощью сравнительного химического анализа составы оксидов различных побочных продуктов металлургии были оценены по сравнению с природным базальтом. Оптимальная смесь (86,19% шлака, 13,81% пыли) близко соответствовала составу базальта, демонстрируя техническую осуществимость. Результаты подчеркивают устойчивый подход к утилизации отходов, снижают воздействие на окружающую среду и предлагают экономически жизнеспособную замену традиционной добыче базальта, способствуя принципам круговой экономики и промышленной устойчивости в Узбекистане.
Keywords: basalt fiber, metallurgical waste, slag, ferrosilicon dust, oxide composition, sustainable materials, recycling.
Ключевые слова: базальтовое волокно, металлургические отходы, шлак, ферросилициевая пыль, оксидный состав, экологически чистые материалы, переработка.
Introduction. Basalt fiber is increasingly used in modern industry due to its environmentally friendly, lightweight, high-strength, and heat-resistant properties. It finds applications in construction, automotive, aerospace, and defense sectors [1].
The production process involves melting natural basalt rock at high temperatures and forming thin fibers without chemical additives, ensuring environmental safety. Key stages include mining, melting, drawing, and fiber formation [2].
Compared to traditional glass and carbon fibers, basalt fiber offers advantages such as high mechanical strength, corrosion resistance, and excellent thermal and acoustic insulation. These qualities are driving its growing adoption across industries.
In Uzbekistan, basalt deposits are mainly located in “Gavasoy” (Namangan), “Asmansoy” (Jizzakh), and “Aydarkul” (Navoi). More than ten private enterprises process extracted basalt into construction materials, though only a few operate continuously. As a result, the average daily processing volume does not exceed 25–30 tons [3].
A promising solution to meet rising demand is to produce basalt fiber not only from natural sources but also by utilizing metallurgical waste as an alternative raw material.
Slags and other metallurgical wastes often have oxide compositions similar to basalt. Blast furnace and electric arc furnace slags contain high levels of SiO₂, Al₂O₃, FeO, CaO, and MgO, making them suitable for basalt fiber production. Their use can reduce atmospheric emissions, enhance waste recycling, and improve economic outcomes [4-6].
This study aims to assess the potential of metallurgical waste in basalt fiber production, explore processing methods, and highlight economic and environmental benefits. Ultimately, the goal is to promote sustainable industrial development through more effective use of industrial waste.
Materials and methods. The chemical and material composition of certain metallurgical wastes that are similar to basalt rock in composition were initially analyzed. As these materials are mainly composed of silicates, their composition was determined using a Rigaku XRF laboratory analyzer (Japan) via X-ray fluorescence spectrometry [7-8].
The primary materials for basalt fiber production – processed basalt minerals and selected metallurgical waste from various metallurgical plants – along with their chemical compositions, are presented in Table 1.
Table 1.
Oxide Chemical Composition of Basalt Mineral and Metallurgical Waste with Similar Composition
|
№ |
Oxide |
Composition of Basalt Mineral |
Blast Furnace Slags |
Electric Arc Furnace Slags |
Residue from Copper Slag Beneficiation Process |
Dust from Ferrosilicon Production |
|
Quantity, % |
||||||
|
1 |
SiO2 |
47–52 |
35–45 |
40–50 |
33,3 |
79,6 – 86,9 |
|
2 |
Al2O3 |
14–18 |
10–20 |
10–18 |
6,73 |
0,25 – 0,84 |
|
3 |
CaO |
6–12 |
30–40 |
10–20 |
2,31 |
0,25 – 0,84 |
|
4 |
FeO |
6–10 |
0,5–2 |
1–5 |
- |
- |
|
5 |
MgO |
5–7 |
5–10 |
3–8 |
1,15 |
0,4 – 1,05 |
|
6 |
Fe2O3 |
2–5 |
- |
5–15 |
49,0 |
1,23 – 3,08 |
|
7 |
Na2O |
1,5–3 |
- |
- |
- |
- |
|
8 |
TiO2 |
1–2,5 |
0,5–2 |
1–3 |
0,295 |
- |
|
9 |
K2O |
0,1–1,5 |
- |
- |
2,11 |
- |
|
10 |
P2O5 |
0,2–0,5 |
- |
- |
- |
- |
|
11 |
MnO |
0,1–0,2 |
- |
0,5–2 |
0,25 |
- |
Results and discussion. Based on the data presented in Table 1, the similarity of metallurgical waste to basalt composition is analyzed as follows:
Although the contents of SiO₂ (35–45%) and Al₂O₃ (10–20%) in blast furnace slags are lower than those in basalt minerals, they still exhibit approximate compatibility. However, the significantly high content of CaO (30–40%) marks a substantial deviation from basalt composition. Additionally, the FeO content (0.5–2%) is very low, indicating limited compatibility with basalt. Overall, while blast furnace slags contain components similar to those in basalt, the high CaO content and low FeO content limit their direct substitution for basalt.
Electric arc furnace slags show a higher degree of compositional similarity to basalt. The contents of SiO₂ (40–50%), Al₂O₃ (10–18%), MgO (3–8%), TiO₂ (1–3%), and FeO (1–5%) align closely with typical basalt values. Although the Fe₂O₃ content (5–15%) is somewhat higher than in basalt, this material still presents itself as a promising candidate for basalt fiber production. Furthermore, while CaO content (10–20%) is somewhat higher than in basalt, it is significantly more compatible than that in blast furnace slags. Therefore, electric arc furnace slags are considered the most suitable metallurgical waste in terms of compositional similarity to basalt.
The residue from copper slag beneficiation contains components such as SiO₂ (33.3%), Al₂O₃ (6.73%), CaO (2.31%), and MgO (1.15%), showing very low resemblance to basalt composition. Notably, the extremely high Fe₂O₃ content (49.0%) classifies this waste as unsuitable for basalt fiber production. Hence, this waste type is not considered a viable match for basalt composition.
The dust from ferrosilicon production exhibits an extremely high SiO₂ content (79.6–86.9%), which greatly differs from that of basalt. Additionally, the contents of Al₂O₃ (0.25–0.84%), CaO (0.25–0.84%), MgO (0.4–1.05%), Fe₂O₃ (1.23–3.08%), and other oxides do not match basalt composition. Therefore, this material possesses virtually no compositional similarity to basalt and is unsuitable for basalt fiber production.
To explore the potential of using metallurgical waste as a substitute for natural basalt in basalt fiber production, a study was conducted to determine the most compatible composite by blending different metallurgical wastes in optimal proportions. According to the results of the analysis, electric arc furnace slag and ferrosilicon dust were selected as the most compatible candidates. Optimization results revealed that a mixture consisting of 86.19% electric arc furnace slag and 13.81% ferrosilicon dust produced a composite whose oxide composition most closely resembled that of natural basalt. This demonstrates the potential of efficiently utilizing metallurgical waste in basalt fiber production.
Conclusion. The study evaluated the suitability of various metallurgical wastes as raw materials for basalt fiber production. Results showed that electric arc furnace slags have the closest composition to natural basalt and can serve as the primary component. When blended with 13.81% ferrosilicon dust, a composite containing 86.19% slag achieved an oxide composition most similar to basalt. This approach contributes to environmental sustainability by recycling industrial waste, reduces dependence on natural resources, and ensures economic efficiency. It demonstrates the potential of using optimized metallurgical waste mixtures as viable alternatives in basalt fiber manufacturing processes.
References:
- Kadirov N.A., Hojiyev Sh.T., Zayniddinov V.V. Bazalt tola ishlab chiqarishidan hosil boʻlgan chiqindilar asosida izoblok devorbop qurilish materialini olish imkoniyatlari // “O‘zmetkombinat” AJning 80 yilligi munosabati bilan o‘tkazilgan “INNOMET.UZ – 2024” xalqaro ilmiy-amaliy konferensiyasi ma’ruzalar to’plami, Bekobod, 16-17 may 2024 yil. S. 115-117.
- Рахматов Х.Б., Рахматов Б.У. О Добычи базальтов и пути повышения качества базальтовой продукции // Universum: технические науки: электрон. научн. журн. – 2023. – T. 12. – №. 117. – С. 1-6.
- Курбанов А.А., Абдурахмонов С.А. и Тураев А.С. Основы переработки базальтов Кызылкума. Ташкент: Фан. 2010. – 167 с.
- Khojiev, S.T. Processing of copper slag using waste tires // Metallurgist. – 2025. – T. 68. – № 8. – P. 1-10.
- Самадов А.У., Хожиев Ш.Т., Жалолов Б.А., Каршиев Х.К., Черник А.А. Комплексная переработка пыли ДСП и ее интеграция в металлургический процесс // “Kimyo sanoatining dolzarb muammolari, innovatsion yechimlari va istiqbollari” nomli xalqaro ilmiy-amaliy anjumani to‘plami, Olmaliq, 1-2 noyabr, 2024 y. S. 272-273.
- Hou Y., Yu J., Zheng D., Xu J., Ma G., Khojiev S., Kadirov N. Preparation and chromatic performance of black ceramic tiles from chromium slag, copper slag and silicon manganese slag // Journal of Ceramic Processing Research. – 2025. – T. 26. – № 1. – P. 139 - 147.
- Kadirov N.A., Khojiev Sh.T. Research on the production of wall insulation building material from various waste materials of metallurgy and basalt fiber // “Respublika janubida geologiya, kon-metallurgiya va neft-gaz sohalarining istiqbollari” nomli xalqaro ilmiy va ilmiy-texnik anjumani to‘plami, Termiz, 22-23 noyabr, 2024 y. S. 210-212.
- Hojiyev Sh.T., Kadirov N.A. Metallurgik zavodlarning chiqindilaridan qurilish materiallari olish // “Respublika janubida geologiya, kon-metallurgiya va neft-gaz sohalarining istiqbollari” nomli xalqaro ilmiy va ilmiy-texnik anjumani to‘plami, Termiz, 22-23 noyabr, 2024 y. S. 212-214.