PhD in Engineering, Associate Professor, Azerbaijan State Oil and Industry University, Azerbaijan, Baku
MODES OF OPERATION OF THE LOADING DEVICE DURING RESEARCH ELECTRIC DRIVE OF THE PORTAL MANIPULATOR
ABSTRACT
This study investigates the functioning and performance of a load device integrated into a portal manipulator's electric drive system. To analyze the electric drive's operation, a comprehensive mathematical model is employed using the Matlab & Simulink software package, which enables the simulation of various operational parameters. The manipulator's electric drive system includes a synchronous machine, a transistor pulse inverter, current and speed regulators, and a nonlinearity model to limit stator current. The load device model incorporates the motor’s anchor circuit, a transistor converter, current feedback, and motor EMF feedback. The system's behavior is examined under different conditions, such as varying load torque, friction coefficients, and the moment of inertia. This modeling approach offers valuable insights into the optimization of control system parameters, enhancing the performance and reliability of the manipulator in automated loading, unloading, and transport tasks. Simulated results are presented through oscillograms illustrating the motor's start-up, speed control, and torque dynamics. The proposed mathematical model offers an essential tool for the development and improvement of electric drives in industrial manipulator systems.
АННОТАЦИЯ
В данном исследовании исследуется функционирование и производительность нагрузочного устройства, интегрированного в систему электропривода портального манипулятора. Для анализа работы электропривода используется комплексная математическая модель с использованием программного комплекса Matlab & Simulink, позволяющая моделировать различные параметры работы. Система электропривода манипулятора включает в себя синхронную машину, транзисторный импульсный инвертор, регуляторы тока и скорости, а также нелинейную модель ограничения тока статора. Модель нагрузочного устройства включает в себя якорную цепь двигателя, транзисторный преобразователь, обратную связь по току и обратную связь по ЭДС двигателя. Поведение системы исследуется при различных условиях, таких как изменение момента нагрузки, коэффициентов трения и момента инерции. Этот подход к моделированию дает важную информацию для оптимизации параметров системы управления, повышения производительности и надежности манипулятора при выполнении автоматизированных задач погрузки, разгрузки и транспортировки. Результаты моделирования представлены в виде осциллограмм, иллюстрирующих запуск двигателя, управление скоростью и динамику крутящего момента. Предложенная математическая модель является важным инструментом для разработки и совершенствования электроприводов в промышленных манипуляторных системах.
Keywords: mathematical model, motor, conveyor, speed control, inverter, current and speed regulators, measure, portal manipulator, electric drive.
Ключевые слова: математическая модель, двигатель, конвейер, регулирование скорости, инвертор, регуляторы тока и скорости, мера, портальный манипулятор, электропривод.
INTRODUCTION
To verify the features of the functioning and performance of the load device, its operation was carried out in the composition of the portal manipulator electric drive. A comprehensive study of the electric drive system should account for all relevant parameters [7].
The structure of the components. This requires the control of the variables of the electrode of the gape, inaccessible to measure in real machines. Therefore, the studies of drives widely are carried out by a mathematical model of lifting using the Matlab & Simulink applied package [13-15].
The studied manipulator is used for automatic operations loading, unloading, as well as transportation of preparations from a conveyor to the paradise of the machine (Figure 1).
The gantry manipulator includes an electric drive for moving the gantry and electric drives for the arms for gripping and moving parts. The tachogram of the arm movement of the gantry manipulator during the working cycle is shown in Figure 1. The tachogram displays the following operations: engine spin-up to a speed of 3000 rpm; uniform movement; braking to a damping speed of 250 rpm; movement at a damping speed and braking to a complete stop. Let us consider the mathematical model of the electric drive of the arm of the gantry manipulator and the loading device [1-4].
Figure 1. Tachogram of the portal manipulator arm movement
ALGORITHM FOR SOLVING THE PROBLEM
The upper part of the diagram of the mathematical model (Figure 2) contains the model of the electric drive of the manipulator arm, and the lower part - the model of the loading device. The mathematical model of the electric drive of the manipulator arm includes a model of a synchronous machine (Transferfcn1 and transferfcn, Gain), a transistor pulse inverter UM (Transferfcn2), models of the current regulator AA (PID-Controller) and the speed regulator AR (PID-Controller 1), models of current feedback UA and speed BR (Gain1, Gain2), as well as a nonlinearity model Imax, which provides limitation of the stator current [10-14]. The speed setting is provided by the SignalBulder block, the signal of which is fed to the AR controller input via the F filter. The load device model contains the motor anchor circuit (Transferfcn4), the UM transistor converter (Transferfcn6), the AA current controller (PID-Controller 2), the UA armature current negative feedback sensor (Gain3) and the motor EMF feedback model (Gain4). The load torque is controlled by the SignalBulder1 block. The registration of the curves of the specified З and actual angular velocity of the rotor, as well as the torque M of the valve motor, is performed by the Scope block [5-8].
The parameters and time constants of the electric drives of the manipulator arm and the loading device are presented in Table 1.
Figure 2. Mathematical model of the electric drive of the manipulator arm with a loading device
Table 1.
Parameters of electric drives of the manipulator arm and loading device
Electric drive of the portal manipulator arm |
Electric drive of the loading device |
||
Nominal torque, Nm |
4,5 |
Nominal power, kW |
0,8 |
Rotation speed, nnom |
3000 |
Rotation speed, nnom |
3000 |
Constant, Cm, Nm/A |
0,44 |
Nominal voltage, V |
110 |
Constant, CE, Nm/A |
0,477 |
Nominal current, A |
8,7 |
Equivalent stator resistance, Ohm |
|
Converter gain |
16 |
Electromagnetic constant, Ts, s |
0,0075 |
Anchor chain resistance, Ohm |
1,1 |
Current sensor transfer coefficient, V/A |
0,937 |
Machine constants: Сm, Nm/A and CE, Nm/A |
0,29 0,33 |
Tachogenerator transfer coefficient, Vs/rad |
0,047 |
Current sensor transfer coefficient, V/A |
0,86 |
Reduced moment of inertia of electric drive system |
0,00152 |
Electromagnetic time constant, s |
0,03 |
The drive start-up process is performed by feeding the BulderSignal block signal to the control input of the system and the lBulder-Signal 1 block signal to the disturbing input [9]. The BulderSignal block control signal corresponds to the graph of the specified rotation speed З is given in the Figure 3, and the disturbing signal of the Bulder-Signal 1 block simulates the load torque on the motor shaft in accordance with the mass of the moving part. Its presence in the current limiting unit circuit allows you to directly set the maximum permissible values of the stator current iSqmax during start-up. The block allows you to record the specified angular frequency З , the torque М on the motor shaft, and the actual angular frequency of the electric drive [16].
Figure 3. Oscillograms of the operating modes of the electric drive with a load device
CONCLUSION
The study successfully demonstrates the use of a detailed mathematical model to analyze and optimize the electric drive system of a portal manipulator in combination with a load device. By utilizing Matlab & Simulink for simulation, the research highlights the importance of accounting for various system parameters, such as load torque, inertia, and friction, in understanding the performance and efficiency of the manipulator. The findings underscore the significance of precise control over the electric drive’s speed and torque, as well as the need for current limitation to prevent system overloads during start-up and operation. The model proves to be an effective tool for predicting the behavior of the manipulator under varying conditions, providing valuable insights into system performance that are crucial for the development of robust control strategies. Overall, this work contributes to advancing the design and optimization of electric drives in automated manipulator systems, ensuring enhanced reliability, efficiency, and operational safety in industrial applications.
References:
- Shikhaliyeva S.Y., Safiyev E.S. Solving optimization problems in steady operation of regulated asynchronous motor // Przegląd Elektrotechniczny. 2024. R. 100. №10. С. 39-42. ISSN 0033-2097.
- Shikhaliyeva S.Y. Advantages of regulating the speed of rotating mechanisms using thyristor voltage regulators // Universum: Technical Sciences. 2024. №4(121). С. 74-77. Москва.
- Shikhaliyeva S.Y. Increasing the capacity of electrical transmission lines // MAS 19th International European Conference on Mathematics, Engineering. 2024. С. 423-429. Мингечаур, Азербайджан, 17-18 апреля.
- Shikhalieva S.Y. Influence of load factor of asynchronous engines for reactive power consumption // Flagship of Science. 2024. С. 265-270.
- Marufov M., Shikhaliyeva S.Y. Analysis of the effect of temperature on solar panels and their cooling methods // Reliability: Theory & Applications. 2024. Т. 19. №4 (80). С. 581-585.
- Shikhaliyeva S.Y. Ways to increase the efficiency of electric machines // Научный журнал «Интернаука». 2024. С. 11-14. Москва, Россия.
- Kerimzade G.S., Mamedova G.V. Analysis of parameters of EA with LE // Приборостроение. 2018. №12 (61). С. 67-71. Санкт-Петербург.
- Kerimzade G.S. Calculation of parameters of control induction support // Przegląd Elektrotechniczny. 2024. R. 100. №5. С. 219-221. Warszawa.
- Kerimzade G.S. Analytical expressions of the relationship to the calculation of the AC stabilizer with induction levitation // International Journal on Technical and Physical Problems of Engineering (IJTPE). 2024. №1. С. 58-62.
- Kerimzade G.S. Method for determining the overall dimensions of an induction control support // Przegląd Elektrotechniczny. 2024. R. 100. №6. С. 235-237. Warszawa.
- Kerimzade G.S. Structure of the monitoring and tracking electromechanical control system // Przegląd Elektrotechniczny. 2024. R. 100. №7. С. 295-297. Warszawa.
- Kerimzade G.S., Mamedova G.V. Research of electromechanical devices with levitation elements in control systems // Journal “Reliability: Theory & Applications”. 2024. Т. 19. №2(78). С. 85–90. ISSN 1932-2321.
- Piriyeva N.M. Design of electric devices with induction levitation elements // International Journal on Technical and Physical Problems of Engineering (IJTPE). 2022. Т. 14. №1. С. 124-129.
- Shikhaliyeva S.Y. Calculation of starting characteristics of two rotor engines // VI International Scientific and Practical Conference «Old and new technologies of learning development in modern conditions». 2024. №2. С. 245-251. Берлин, Германия.
- Denisov V.A., Tretyakova M.N. Theory and transients of electromagnetic devices and electromechanical energy converters. Кассандра, 2017. 108 с.
- Vasiliev B.Y. Electric drive // Electrical wiring power engineering: textbook for universities. Москва: Солон-Пресс, 2015. 267 с.