DETERMINING THE VIBRATION FREQUENCY OF THE STRENGTH OF THE MESH SURFACE OF THE LINT CLEANING MACHINE

ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ЧАСТОТЫ ВИБРАЦИИ СТРУННОЙ ПОВЕРХНОСТИ МАШИНЫ
Цитировать:
Aliyev B.T., Shamshitdinov M.E. DETERMINING THE VIBRATION FREQUENCY OF THE STRENGTH OF THE MESH SURFACE OF THE LINT CLEANING MACHINE // Universum: технические науки : электрон. научн. журн. 2024. 12(129). URL: https://7universum.com/ru/tech/archive/item/18756 (дата обращения: 26.03.2025).
Прочитать статью:
DOI - 10.32743/UniTech.2024.129.12.18756

 

ABSTRACT

In this article, the vibration frequency and amplitude that occur during the impact on the mesh surface of the lint cleaning machine are analyzed. To ensure the machine's efficient operation, the mesh surface's movement characteristics were studied using 2 mm thick steel under various masses and speeds. According to the research results, as the mass and speed values impacting the mesh surface change, the vibration amplitude and frequency also change accordingly. These parameters are important for increasing the efficiency of the lint cleaning process and ensuring optimal performance.

АННОТАЦИЯ

В данной статье анализируется частота и амплитуда вибрации, возникающей при ударе ворс очистительной машины о поверхность струны. Для обеспечения эффективной работы машины были исследованы характеристики движения поверхности струны при различных массах и скоростях с использованием стали толщиной 2 мм. Согласно результатам исследований, по мере изменения значений массы и скорости удара о струнную поверхность соответственно изменяются и амплитуда, и частота вибрации. Эти параметры важны для повышения эффективности процесса очистки ворса и обеспечения оптимальной производительности.

 

Keywords: lint cleaning machine, mesh surface vibration, amplitude, frequency, impulse, Young's modulus, elasticity modulus, efficiency.

Ключевые слова: машина для очистки ворса, вибрация поверхности струны, амплитуда, частота, импульс, модуль Юнга, модуль упругости, КПД.

 

Introduction

In global practice, cotton fiber is considered the primary raw material for the textile industry. Cotton fiber plays a crucial role in the production of high-quality products. The development of the textile industry is primarily linked to improving cotton processing techniques and technology [1]. These processes are carried out by increasing cotton fiber yield, improving product quality, and effectively managing the production process. In developed countries such as the USA, China, Turkey, and India, special attention is being paid to modernizing cotton cleaning technologies, automating equipment, and introducing new technologies [2].

In the cotton cleaning process, the experience of adding mesh surfaces to linter machines is being introduced to improve the efficiency of lint separation. This process serves to enhance lint separation and cleaning efficiency, as mesh surfaces facilitate the retention and separation of lint. These methods offer opportunities to save resources, reduce time, and decrease energy consumption at each stage of the production process [3].

This study analyzes important parameters such as the vibration of the mesh surface in the cotton cleaning process, its elastic properties, amplitude, and frequency. During the vibration process, Young's modulus, the force acting on the surface, and other parameters are taken into account [4]. Young's modulus defines the elasticity of the material and affects the vibration characteristics of the mesh surface. The forces applied to the surface also impact vibration indicators such as amplitude and frequency. These parameters, in turn, help to improve the efficiency of the cleaning process [5].

The data presented in the article can be applied to optimize the cotton cleaning process, increase energy efficiency, and improve product quality. On the other hand, the research results will help to improve the design of lint cleaning machines, extend their service life, and increase their efficiency. Each of these parameters is highlighted individually, and the factors affecting the vibration process are examined [6].

Additionally, this research contributes to the development of innovative solutions aimed at addressing important problems in the textile industry. It represents an important step towards further advancing cotton cleaning technologies and includes the proposed theoretical and practical approaches. In the future, these results are expected to be applied in practice, helping to make the cotton cleaning process more efficient and environmentally friendly [7].

Methods

To increase the strength of the installed mesh surface, metals of different thicknesses were used during the experiment, and 2 mm thick steel was chosen. We will determine the exact vibration frequency and amplitude present at this surface thickness. For this purpose, the linear velocity of the outer points of the brush drum is 15.7 m/s. As a result, the raw material speed cannot exceed 15.7 m/s. Assuming its mass is in the range of 0-1.78 kg, its impulse will be as follows [8].

If we consider the impulse of the raw material along the X-axis and calculate the change in impulse during its impact on the mesh surface, the angle A represents the angle formed between the mesh surface and the horizontal.

 

 

 

In the case where the installation angle of the mesh is alpha α≥450, it is known that the system operates with higher efficiency. For the scenario where α = 450,

Let's calculate the initial impulse of the lint. The initial impulse of the lint along the OX axis is determined using the following formula.

Since we consider the movement of the lint along the X-axis, it does not have any impulse along the Y-axis.

Namely,

 Let's calculate the impulse of the lint after it strikes the mesh and rebounds. In this case, the subsequent movement of the lint forms an angle ɣ with the horizontal, meaning the subsequent impulse of the lint along the OX axis can be calculated using the following formula [9]:

The impulse of the lint along the Y-axis can be determined using the following formula:

To calculate the total impulse of the lint upon returning from the mesh, we can use the following formula [10]:

The change in lint impulse is manifested as the force impulse, meaning that

The change in lint impulse, represented by dP, can be calculated using the formula:

The value of Δt can be taken in the range of  seconds [11].

The calculation of the force acting on the mesh surface stops here [12]. To determine the frequency and amplitude based on the force applied to the surface, we need to take into account the Young's modulus of the surface. For steel, the Young's modulus Ep=200-210 GPa [13].

The relationship between the Young's modulus for the mesh surface and the forces applied to it is as follows [14]:

Here: l-length, a- width of the mesh surface, b-thickness, E- Young's modulus (elasticity modulus)

We will determine the amplitude generated during the vibration of the mesh surface.

Using the above quantities, we will use the following formula to determine the vibration frequency of the mesh surface.

Results

As a result of the above calculations, the amplitude and frequency values have been determined based on the mass of the metal surface installed on the mesh and the impact speed. Using this information, the efficiency of the mechanical system of the lint cleaning machine can be analyzed [15].

Table 1.

Results

The mass that can impact the mesh surface. m

The speed impacting the mesh surface. v

The amplitude of the mesh surface. λ

The frequency of the mesh surface. f

1

0,5

15,7

0,16*10-3

3,38

2

0,55

15,2

0,18*10-3

4,87

3

0,6

14,7

0,21*10-3

6,67

4

0,65

14,2

0,23*10-3

8,77

5

0,7

13,7

0,25*10-3

11,1

6

0,75

13,2

0,26*10-3

13,6

7

0,8

12,7

0,28*10-3

16,2

8

0,85

12,2

0,29*10-3

18,8

9

0,9

11,7

0,30*10-3

21,2

10

0,95

11,2

0,31*10-3

23,4

11

1

10,7

0,31*10-3

25,2

12

1,05

10,2

0,31*10-3

26,5

13

1,1

9,7

0,31*10-3

27,4

 

As seen in the table, as the mass impacting the mesh surface increases, the vibration amplitude of the mesh surface also increases. For example, if a mass of 0.5 kg impacts the mesh surface at a speed of 15.7 m/s, the resulting amplitude on the surface is 0.16 mm, and in this case, the frequency is 3.38 Hz. However, when the mass is increased to 1.1 kg and the speed decreases to 9.7 m/s, the amplitude rises to 0.31 mm, and the frequency reaches 27.4 Hz.

These analyses allow for an accurate assessment of the vibration frequency and amplitude through the forces acting on the surface, taking into account the size and Young's modulus of the mesh surface. In this way, the operational parameters of the lint cleaning machine can be optimized, leading to an increase in the efficiency of the cleaning process.

Conclusion

In conclusion, this study provided a deep analysis of the forces acting on the mesh surface of the lint cleaning machine and its vibration characteristics. The vibration amplitude and frequency generated on the surface were calculated by varying the installation angle, thickness of the mesh surface, and the mass impacting it. The combination of these parameters is crucial for effectively cleaning and separating lint, playing a key role in optimizing the cleaning process. 

According to the calculation results, it was determined that the vibration frequency of the mesh surface varies from 3.38 Hz to 27.4 Hz for masses ranging from 0.5 kg to 1.1 kg at different speeds. Furthermore, the vibration frequency and amplitude were determined based on factors such as the velocity of the mesh surface and its Young's modulus. This information is valuable for enhancing the efficiency of the lint cleaning process and optimizing the forces acting in the technological process. 

These analyses can be used to improve the design of the lint cleaning machine and enhance its stability characteristics.

The relationship between the applied force and amplitude is crucial for increasing the efficiency and quality of the cleaning process. Additionally, these results contribute to extending the lifespan of the lint cleaning machine and improving its energy efficiency.

Thus, the structure and operational performance of the machine are analyzed, allowing for the identification of optimal performance possibilities.

 

References:

  1. Нуралиев Э.К. Повышение эффективности линтерования хлопковых семян путем совершенствования рабочей камеры линтера. Дисс.канд.техн.наук, ТИТЛП, Ташкент, 1990-138 с.
  2. Сулаймонов Р.Ш., Расулов А., Бавабеков И.Т., Кодиров Х.О., Кулматов И.Т. Момиқ ажратиш машинасининг ишчи камераси ва асосий қисмларини такомиллаштириш. Илмий ҳисобот №040701, ОАЖ “Пахтасаноат ИИЧБ”, Тошкент, 2005-41 б.
  3. Сулаймонов Р.Ш., Каримов У.К., Маруфханов Б.Х. Совершенствование базовых звеньев пильного линтера и его освоение в производстве, совершенствование работы линтера 5ЛП. Отчет НИР№1406, ОАЖ “Пахтасаноат ИИЧБ”, Тошкент, 2005-41 б., Ташкент, 2014, 51 с.
  4. Умаров А.У. и другие. Исследование смешивания семян в рабочей камере линтера-РС. Хлопковая промышленность, №6, Ташкент, 1981.
  5. Дьячков В.В. и другие. Создание модернизированного пильного линтера с элементами автоматического управления его работой. Отчет ЦНИИХпрома, Ташкент, 1990, 211 с.
  6. Искандаров К.К. Повышение эффективности линтерования хлопковых семян путем совершенствования рабочих органов камеры линтера. Дисс.канд.техн.наук, ТИТЛП, Ташкент, 1998 – 125 с.
  7. Сулаймонов Р.Ш. ва бошкалар. «Бектемир Чингин Линтерлаш» корхонасида ишлаётган Хитой линтер ва момик тозалаш дастгохларини маҳаллий линтер ва момиқ тозалаш дастгоҳларига қарагандаги самарадорлигини аниқлаш бўйича изанишлар. ИХ№091306, “Пахтасаноат илмий маркази” ОАЖ, Тошкент, 2010, 67 б.
  8. “Reactive power compensation and start-up energy waste reduction of linter device electric motor” O.A. Azamatovich, MS Elmurod ugli [Google* Scholar]
  9. Tolalarni ajratish texnologik zavodida reaktiv quvvatni kompensatsiya qilish orqali energiya samaradorligiga erishish” O.A. Azamatovich, MS Elmurod ugli, MI Umid ugli- Taʼlim innovatsiyasi va integratsiyasi, 2023. [Google* Scholar]
  10. “Zamonaviy issiqlik elektr stansiyalarining gaz turbinali qurilmasiga kirish havosini sovutish tizimini ta’minlash” M. Shamshitdinov, I. Mashrabboyev – Sharh va tadqiqot, 2023. [Google* Scholar]
  11. “Zamonaviy kasb-hunar ta’limida kasbiy qiziqishlarning o‘ziga xos xususiyatlari” YO Yoqibovich, SM Elmurodugli - PEDAGOGS jurnali, 2022. [Google* Scholar]
  12. “Yuqori kuchlanishli o‘chirgichlarning podstansiyalarda joylashishi” S. Maqsudbek – Fan va ijod axborotnomasi, 2021. [Google* Scholar]
  13. “Paxta chiqindilari tarkibidan sanoat tolasini ajratuvchi qurilmani takomillashtirish” A.A.Obidov, S.D.Xamidov. Namangan 2022 [Google* Scholar].
  14. Omonov, T. M. (2018). Paxta tolasi va uning texnologik ishlov berish jarayonlari. T.: O'zbekiston Fanlar Akademiyasi nashriyoti.
  15. Karimov, S. A. (2019). Sanoat texnologiyalarini modernizatsiyalash va iqtisodiy samaradorlikni oshirish yo'llari. "Iqtisodiyot va sanoat" jurnali, 12(3), 45-52.
  16. Р.К. Абдуллаев, Б.Т. Алиев, Ж.Б. Мамаджонов. Анализ результатов исследований по международным стандартам. Universum: технические науки №4 (109), апрель, 2023 г Стр 40-44.   https://cyberleninka.ru/article/n/analiz-re-zultatov-issledovaniy-po-mezhdunarodnym-standartam
  17.  Р.К. Абдуллаев, Б.Т. Алиев, Ж.Б. Мамаджонов. Влияние эффективности сушки, очистки и джинорования хлопка сырца на качество волокна. Universum: технические науки №4 (109), апрель, 2023 г Стр 44-47. https://cyberleninka.ru/article/n/vliyanie-effektivnosti-sushki-ochistki-i-dzhinirovaniya-hlopka-syrtsa-na-kachestvo-volokna
  18. Р.К. Абдуллаев, Б.Т. Алиев, Ж.Б. Мамаджонов. Влияние механических воздействий на качества хлопкового волокна и меры по их снижению. Universum: технические науки №7 (124), июль, 2024 г Стр 63-67. https://cyberleninka.ru/article/n/vliyanie-mehanicheskih-vozdeystviy-na-kachestva-hlopkovogo-vo-lokna-i-mery-po-ih-snizheniyu

 

*(По требованию Роскомнадзора информируем, что иностранное лицо, владеющее информационными ресурсами Google является нарушителем законодательства Российской Федерации – прим. ред.)

Информация об авторах

Professor of Namangan Institute of Engineering and Technology, Uzbekistan, Namangan

профессор Наманганского инженерно-технологического института, Узбекистан, г. Наманган

Assistant of Namangan Institute of Engineering and Technology, Uzbekistan, Namangan

ассистент Наманганского инженерно-технологического института, Узбекистан, г. Наманган

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Звездина Марина Юрьевна.
Top