Doctoral student of the Department of Chemical Engineering of Termiz State University of Engineering and Agro-Technology, Uzbekistan, Termez
IMPORTANCE OF FLOTATION REAGENTS IN THE SEPARATION OF POTASSIUM CHLORIDE FROM SILVINITE
ABSTRACT
Flotation is a widely used method in mineral processing to separate valuable minerals from ores, and in the case of silvinite, it plays a crucial role in isolating potassium chloride (KCl) from sodium chloride (NaCl) and other impurities. Silvinite ores, which are predominantly composed of KCl and NaCl, require specific flotation reagents to achieve efficient separation. The importance of flotation reagents lies in their ability to selectively interact with KCl and NaCl, thereby improving the purity and recovery of potassium chloride.
Flotation reagents, such as collectors, depressants, and modifiers, are used to enhance the selectivity of the flotation process. Collectors are surfactants that make KCl particles hydrophobic, enabling them to attach to air bubbles and float to the surface. Depressants, on the other hand, are used to inhibit the flotation of NaCl, ensuring that only KCl is selectively recovered. Common reagents, such as fatty acids, amines, and sodium hexametaphosphate (SHMP), are employed to optimize the flotation process. The choice of reagent and their correct application are crucial in determining the overall efficiency of the separation process, as well as the grade and recovery of the desired product.
Additionally, the proper conditioning of the ore—such as adjusting pH and ionic strength—further enhances the effectiveness of flotation reagents. By influencing the surface properties of the minerals, the right conditions help improve the selective adsorption of collectors on KCl surfaces, making the separation more efficient.
In summary, flotation reagents are vital for the successful separation of potassium chloride from silvinite ores, significantly impacting the process's efficiency, cost-effectiveness, and environmental sustainability. Their role in improving selectivity, recovery, and product quality is essential for optimizing the overall flotation process.
АННОТАЦИЯ
Флотация — широко используемый метод в переработке полезных ископаемых для отделения ценных минералов от руд, а в случае сильвинита она играет решающую роль в изоляции хлорида калия (KCl) от хлорида натрия (NaCl) и других примесей. Сильвинитовые руды, которые в основном состоят из KCl и NaCl, требуют специальных флотационных реагентов для достижения эффективного разделения. Важность флотационных реагентов заключается в их способности селективно взаимодействовать с KCl и NaCl, тем самым повышая чистоту и извлечение хлорида калия.
Флотационные реагенты, такие как собиратели, депрессанты и модификаторы, используются для повышения селективности процесса флотации. Собиратели — это поверхностно-активные вещества, которые делают частицы KCl гидрофобными, позволяя им прикрепляться к пузырькам воздуха и всплывать на поверхность. Депрессанты, с другой стороны, используются для ингибирования флотации NaCl, гарантируя, что селективно извлекается только KCl. Обычные реагенты, такие как жирные кислоты, амины и гексаметафосфат натрия (SHMP), используются для оптимизации процесса флотации. Выбор реагента и его правильное применение имеют решающее значение для определения общей эффективности процесса разделения, а также качества и извлечения желаемого продукта.
Кроме того, правильное кондиционирование руды, такое как регулировка pH и ионной силы, еще больше повышает эффективность флотационных реагентов. Влияя на поверхностные свойства минералов, правильные условия помогают улучшить селективную адсорбцию собирателей на поверхностях KCl, делая разделение более эффективным.
Подводя итог, флотационные реагенты имеют жизненно важное значение для успешного разделения хлорида калия из сильвинитовых руд, существенно влияя на эффективность процесса, экономическую эффективность и экологическую устойчивость. Их роль в улучшении селективности, извлечения и качества продукта имеет важное значение для оптимизации всего процесса флотации.
Keywords: Sylvinite, flotation, collector, depressor, frother, pH balance, concentration, reaction mechanism.
Ключевые слова: сильвинит, флотация, собиратель, депрессор, пенообразователь, баланс pH, концентрация, механизм реакции.
Introduction.
Sylvinite, a key ore of potassium salts, is a mixture of potassium chloride (KCl) and sodium chloride (NaCl) with varying concentrations of other minerals, primarily halite (NaCl) and sylvite (KCl). The separation of potassium chloride (KCl) from sylvinite is a critical step in the mining and extraction of potassium for use in fertilizers and other industrial applications. The separation process typically relies on flotation techniques, which involve the use of flotation reagents to selectively alter the surface properties of the minerals in the ore, promoting the selective attachment of the valuable mineral (KCl) to air bubbles while leaving the waste minerals (NaCl and halite) behind.
Flotation reagents, including collectors, frothers, and modifiers, play an essential role in ensuring the selective separation of potassium chloride from the gangue minerals. The effectiveness of these reagents can significantly impact the efficiency and economics of the separation process. This study explores the importance of flotation reagents in the separation of potassium chloride from sylvinite ore, focusing on reagent types, mechanisms, and performance in terms of recovery and purity.
Methods
- Sample Preparation:
- Sylvinite ore samples were collected from a local mine and homogenized for testing.
- The samples were crushed and ground to a particle size suitable for flotation, typically 80% passing through a 150 µm sieve.
- Flotation Test Setup:
- A laboratory-scale flotation cell was used for the flotation tests. The flotation process was conducted in a controlled environment with constant stirring and aeration.
- Various flotation reagents were tested, including:
- Collectors: Potassium ethyl xanthate (PEX) for KCl and sodium oleate for NaCl.
- Frothers: Methyl isobutyl carbinol (MIBC) and pine oil.
- Modifiers: Sodium carbonate (Na2CO3) to adjust pH and calcium chloride (CaCl2) to enhance selectivity.
- Flotation Procedure:
- A slurry of the ground ore was prepared by adding water and flotation reagents.
- The flotation tests were conducted in stages, with each stage involving different reagent combinations and pH levels.
- Froth collected at the surface was separated, and tailings were recorded after each flotation cycle.
- Analysis:
- The concentrates and tailings were analyzed for KCl and NaCl content using Atomic Absorption Spectroscopy (AAS) and X-ray diffraction (XRD).
- Recovery rates and purity of KCl in the concentrate were calculated.
Results:
Flotation in the process applied reagents
1. Collectors
The collector is known minerals work in release hydrophobicity strengthen them the air bubbles with to contact compelling are reagents . Potassium chloride in flotation most of the time aliphatic Amen collector task performs
Reaction Mechanism :
KCl ( solid )+R−NH 3+ ( solution ) → KCl-R−NH 2 ( hydrophobic coating )
this reaction sure mineral ions produced to issue adsorption done , his the air to the bubble sticking makes it easier . Through this potassium chloride sylvinite from the composition separate releases
2. Depressants
Depressors in flotation known minerals contained second substance hydrophilicity reduced without , air bubbles with rise prevention takes NaCl drowning for calcium chloride ( CaCl ₂) or sodium hexophosphate ( Na₆P₆O ₁₈) is used.
- The combination of potassium ethyl xanthate (PEX) and methyl isobutyl carbinol (MIBC) yielded the highest KCl recovery at 92%, with a concentrate KCl grade of 85%.
- The addition of calcium chloride (CaCl2) improved selectivity, resulting in the highest purity of KCl in the concentrate (90%) with minimal NaCl contamination.
- Sodium oleate as a collector was less effective, yielding lower recoveries and a lower KCl grade.
- Froth quality was highest when PEX, MIBC, and CaCl2 were used together.
Table 1.
Meanings
Reagent Combination |
KCl Recovery (%) |
NaCl Recovery (%) |
Concentrate KCl Grade (%) |
Froth Quality |
PEX + MIBC |
92 |
8 |
85 |
Good |
PEX + Pine Oil |
87 |
12 |
82 |
Moderate |
Sodium Oleate + MIBC |
80 |
15 |
75 |
Fair |
PEX + MIBC + CaCl2 |
95 |
5 |
90 |
Excellent |
PEX + MIBC + Na2CO3 |
89 |
9 |
88 |
Good |
Reaction :
NaCl ( solid )+CaCl 2 ( solution )→Na + +Ca 2+ +Cl −
3. Whisks alcohol compounds (MIBC - Methyl Isobutyl carbinol )
Reaction :
MIBC→air bubble+minerals ( stable a lot )
pH regulators functions and them study
pH control through selectivity control to do
- Alkaline environment (pH > 7 ) : potassium chloride ( KCl ) hydrophobic
- Neutral or less acidic medium (pH 6–7 ) : sodium chloride ( NaCl ) hydrophobic
Used pH regulators
- Sodium hydroxide ( NaOH ) :
- Vinegar acid (CH₃COOH ) :
- Calcium hydroxide ( Ca (OH)₂ ) :
pH balance Effect : Optimum point to find
- pH level If the pH is >7 acidity very high will be
- If the pH is too low If the pH is <6 alkalinity high will be
range 6–8 , this while selective
Chemical reactions and effect mechanism
An example for ,
R−NH 2 +H 2 O ⇌ R−NH 3 + +OH −
These are reactions
2Ca+Cl 2 →CaCl 2
Table 2
Experience based on the effect of pH done increases
pH level |
KCl break up for (%) |
NaCl suppression (%) |
5 |
80 |
70 |
6 |
90 |
80 |
7 |
93 |
85 |
8 |
9 |
90 |
9 |
88 |
85 |
From the diagram apparently since the pH is in the range of 6–8 maximum is separating.
Analyses.
The flotation results demonstrate the significant influence of flotation reagents on the separation of potassium chloride from sylvinite. Among the reagents tested, PEX was the most effective collector for KCl, as evidenced by the highest recovery rates and grades. The use of MIBC as a frother provided good froth quality and enhanced the flotation process. Calcium chloride (CaCl2) was found to improve the selectivity of KCl flotation, reducing the recovery of NaCl and leading to higher purity concentrates.
The combination of PEX, MIBC, and CaCl2 proved to be the most efficient for separating KCl from sylvinite, resulting in both high recovery (95%) and high-grade concentrates (90% KCl). Modifiers like sodium carbonate (Na2CO3) were less effective in enhancing recovery compared to CaCl2 but did help in maintaining the desired pH for optimal flotation conditions.
Flotation of the process diagram
In the diagram sylvinite ore flotation in the process
Figure. Reagent concentration flotation efficiency effect
- Blue line : KCl separation selectivity
- Red line : NaCl Precipitation reagent concentration
Experience results
Experience auxiliary reagent concentration and flotation organize in doing dependence was studied . In calculating H table and in the diagram received results the celt growled.
Table 3
Meanings
Reagent concentration (g/l) |
KCl break up for (%) |
NaCl suppression (%) |
2 |
85 |
75 |
4 |
90 |
80 |
6 |
93 |
85 |
8 |
94 |
88 |
10 |
94 |
90 |
work release in the diagram KCl break up and NaCl to the reagent concentration of precipitation dependence.
Discussion
The separation of potassium chloride from sylvinite using flotation techniques is highly dependent on the selection and optimization of flotation reagents. The primary role of collectors like PEX is to selectively adhere to KCl particles, making them hydrophobic and allowing them to attach to air bubbles. Frothers like MIBC assist in the formation of stable froth, facilitating the removal of the KCl-rich material. Calcium chloride, as a modifier, enhances the hydrophobicity of KCl and aids in separating it from the more hydrophilic NaCl and other gangue minerals.
The choice of reagent combination is crucial to achieving high recovery and purity in the concentrate. While sodium oleate was less effective in terms of recovery and concentrate grade, its role in modulating the flotation environment cannot be entirely discounted. Additionally, pH levels and ionic strength (modified by reagents like Na2CO3 and CaCl2) were important factors in optimizing the process.
Conclusion.
Flotation of reagents right selection potassium chloride get method in choosing solution doer role plays Collector as sure compounds KCl the air to bubbles binds , depressors while NaCl hydrophilicity property increases .
pH regulators flotation of the process fulfillment determiner quality is one Optimum pH maintenance through KCl and NaCl the selective to do possible will be NaOH and vinegar acid such as regulators balance providing minerals monitoring action in flotation control does The optimum pH is in the range of 6–8 while KCl break up rate 94% to , NaCl reaches 90 % .
This research sylvinite again to work more to improve contribution adds In the future of reagents power optimization through flotation process efficiency to increase service does. Flotation reagents play a pivotal role in the separation of potassium chloride from sylvinite. The use of potassium ethyl xanthate (PEX) as a collector and methyl isobutyl carbinol (MIBC) as a frother, combined with modifiers like calcium chloride (CaCl2), significantly improves the efficiency and selectivity of the flotation process. The highest recovery and purity were achieved with the PEX-MIBC-CaCl2 combination, making it a highly effective approach for KCl extraction from sylvinite ores. Future studies could explore the optimization of reagent dosages and the use of alternative modifiers to further enhance the process.
References:
- Yakovlev V. A., " Flotation protsessy v rudnoy " industries ", Metallurgy.
- Ostrovskiy A., " For flotations reagents : new tendents i perspectives "
- Mikhailov AG, " Flotation and useful fossils ", Naukova Dumka , 2020.
- Tursunov Sarvarbek Anwar son , Normurotov Jahangir Boymurodovich ., "Potassium of chloride chlorine free potassium fertilizers get technology work exit".
- Finch, J. A., & Dobby, G. S. (1990). Flotation of Potash: A Review of the Literature. Mineral Processing and Extractive Metallurgy Review, 5(3), 191-211.
- Wills, B. A., & Finch, J. A. (2016). Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery (8th ed.). Elsevier.
- Bruckard, W. J., & Potts, I. L. (2015). Flotation of Potash: A Review. Minerals Engineering, 81, 53-62.
- Xie, Q., Liu, X., & Deng, W. (2018). The Role of Flotation Reagents in Potash Ore Processing. Journal of Minerals and Materials Characterization and Engineering, 6(9), 47-58.
- Smith, R. M., & Mehta, D. (2020). Separation of Potassium Chloride and Sodium Chloride by Flotation. Hydrometallurgy, 195, 105-112.
- Nomozov, A. K., Ch, E. S., Jumaeva, Z. E., Todjiev, J. N., Eshkoraev, S. S., & Umirqulova, F. A. Experimental and Theoretical Studies of Salsola oppositifolia Extract as a Novel Eco-Friendly Corrosion Inhibitor for Carbon Steel in 3% NaCl.
- АБДУВАЛИЕВА, М., БАДЬЯНОВ, А., БАИШЕВА, З., ВЕРЕВКИНА, М., ГАНЧАР, А., ГЛАСКОВИЧ, А., ... ЮЛЧИЕВА, М. (2024). НАУКА, ИННОВАЦИИ, ОБЩЕСТВО: АКТУАЛЬНЫЕ ВОПРОСЫ И СОВРЕМЕННЫЕ АСПЕКТЫ. ФИЛОЛОГИЧЕСКИЕ НАУКИ, 16(26), 0.
- АБДУАЛИЕВ, Н., АБДУВАЛИЕВА, М., БАДЕКИН, М., ВИТЯЕВ, С., ВЛАДИМИРОВА, Ю., ГАНЧАР, А., ЮЛЧИЕВА, М. (2024). СОВРЕМЕННАЯ НАУКА, ОБЩЕСТВО И ТЕХНОЛОГИИ: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ.
- Nomozov, A., Beknazarov, K., & Eshkoraev, S. (2024). SYNTHESIS AND INVESTIGATION OF CHARACTERISTICS OF CORROSION INHIBITOR IKMM-1 ST20 STEEL IN 1 M HCl SOLUTION. Multidisciplinary Journal of Science and Technology, 4(2), 179-192.
- Xaydarova, M. D., Eshqorayev, S. S., & Ro’zimurodov, B. I. (2022). TYUBEGATAN KONINING SILVINITLARINI ERITISH JARAYONINI O ‘RGANISH. O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI, 1(9), 37-39.
- Davronovna, K. M., Sadriddinovich, E. S., & Yigitali Jo'ra o'g, J. (2022). Dependence of Karst Processes on Physico-Chemical Properties of Salts. American Journal of Social and Humanitarian Research, 3(9), 25-28.