CATALYTIC AROMANICATION OF PROPANE MIXTURE

КАТАЛИТИЧЕСКАЯ АРОМАТИЗАЦИЯ ПРОПАНОВАЯ СМЕСЬ
Цитировать:
CATALYTIC AROMANICATION OF PROPANE MIXTURE // Universum: технические науки : электрон. научн. журн. Fayzullaev N. [и др.]. 2024. 11(128). URL: https://7universum.com/ru/tech/archive/item/18543 (дата обращения: 18.12.2024).
Прочитать статью:

 

ABSTRACT

In the article, the composition and catalyst yield of the liquid products of the aromatization reaction to mononuclear and polynuclear arenes in the selected catalysts for aromatization of propane-butane mixture without the presence of oxidants in the presence of a catalyst without the presence of oxidants, and the conversion selectivity of the propane-butane mixture without the presence of oxidants, and a and 0.35 in the study of polynuclear arenes productivity dependence; 0.7; 2.0; 3.0% titanium was carried out. The main parameters of the process of aromatization of propane were studied by absorbing the selected catalyst with a titanium nitrate solution. This article contains 0.35; 0.7; 2.0; 3.0% titanium has been carried out to study the laws of the aromatization reaction of propane by adding titanium nitrate solution to the chosen catalyst to obtain arenes by aromatizing the propane-butane mixture in the presence of a catalyst without the presence of oxidants.

АННОТАЦИЯ

В статье исследованы состав и выход жидких продуктов реакции ароматизации в моноядерные и полиядерные арены на выбранных катализаторах ароматизации пропан-бутановой смеси без присутствия окислителей в присутствии катализатора без присутствия окислителей, а также селективность превращения пропан-бутановой смеси без присутствия окислителей, а также проведено исследование зависимости производительности полиядерных аренов от содержания титана 0,35; 0,7; 2,0; 3,0%. Изучены основные параметры процесса ароматизации пропана путем абсорбции выбранного катализатора раствором нитрата титана. В данной статье содержится 0,35; 0,7; 2,0; 3,0% титана было проведено исследование закономерностей реакции ароматизации пропана путем добавления раствора нитрата титана к выбранному катализатору для получения аренов путем ароматизации смеси пропан-бутан в присутствии катализатора без присутствия окислителей.

 

Keywords: propane, aromatization, temperature, reaction yield, selectivity, mesoporous sorbent.

Ключевые слова: пропан, ароматизация, температура, выход реакции, селективность, мезопористый сорбент.

 

INTRODUCTION

The past few decades have seen rapid progress in the conversion of light hydrocarbons into more valuable products. In this regard, conversion of light alkanes to aromatic substances is of great importance in industry. Benzene, toluene and xylene (BTX) are produced by aromatization of light alkanes. BTX aromatic hydrocarbons are considered valuable intermediates in chemical and petrochemical industries. Synthesis of benzene, toluene, and xylene from propane-butane fractions and petroleum gases using a catalyst based on high-silicon sorbents has been thoroughly studied. In addition, in the presence of a catalyst prepared on the basis of high-silicon sorbents, a number of scientific and research works were carried out on the synthesis of ethylene from methane from synthesis gas, methanol and dimethyl ether, and low molecular hydrocarbons from methanol and dimethyl ether.

EXPERIMENTAL PART

In the work, the composition of the liquid products of the aromatization reaction to mononuclear and polynuclear arenes and the catalyst yield (T = 650 oC) are presented in Fig. 1.

Study of selected zinc-titanium catalysts for obtaining arenes by aromatizing propane-butane mixtures without the participation of oxidants. 0.35 in the study of the dependence of the conversion selectivity of the propane-butane mixture without the participation of oxidants and the productivity of mononuclear and polynuclear arenes; 0.7; 2.0; 3.0% titanium was carried out, the propane-butane mixture was aromatized in the presence of a catalyst in the presence of a catalyst, and a titanium nitrate solution was added to the selected catalyst to obtain arenes: To compare the properties of the samples in the presence of the catalyst, a temperature of 600 °C was selected at a volume rate of 600 and 650 h-1. The addition of 0.35% titanium increases the conversion of the propane-butane mixture to 85.2%. When the amount of titanium was increased to 3.5%, a further increase in the activity of the selected catalyst for aromaticizing arenes in the presence of a propane-butane mixture in the presence of a catalyst without the presence of oxidants was observed.

EXPERIMENTAL RESULTS AND THEIR DISCUSSION

0.35 in the composition of the study of the dependence of the conversion selectivity of propane without the participation of oxidizers and the productivity of benzene, toluene, ethylbenzene and xylenes; 0.7; 2.0; was carried out on a catalyst containing 3.0 % titanium. In order to compare the characteristics of the samples in the presence of a catalyst with high catalytic activity and productivity, a temperature of 600 °C was chosen at a volume rate of 600 and 650 h-1. The addition of 0.35% titanium increases the propane conversion to 85.2%. When the titanium content was increased to 3.5%, a further increase was observed in the activity of the catalyst with high catalytic activity and performance selected for the production of aromatic arenes in the presence of a catalyst with high catalytic activity and performance without the presence of propane oxidizers.

In the samples containing 3.5% titanium, the yield of arenes was 58.4-63.3%, raw material conversion was 93.6-94.2%, and selectivity was increased up to 63.2%. Titanium content increased from 0.35 to 3.5 %, the productivity of arenes decreased.

 

Figure 1. Dependence of aromatization parameters on Ti content at 600°C during aromatization of propane without oxidizing agents

 

The selectivity of the formation of aromatic products decreases from 73.4 to 63.3% with an increase in the amount of added titanium, and with an increase in methane formation from 24 to 30.8%. The quantitative composition of products of aromatization of propane to benzene, toluene, ethylbenzene and xylenes without the presence of oxidants varies depending on the titanium content of the catalyst selected for aromatization of arenes in the presence of a catalyst with high catalytic activity and productivity without the presence of oxidants. Thus, the content of polynuclear hydrocarbons: benzene increased from 27.0 to 35.4% with an increase in titanium concentration.

CONCLUSION

Thus, the temperature dependence of the conversion, productivity and selectivity of aromatic hydrocarbons in the catalytic dehydroaromatization of propane was shown. The selectivity of the formation of aromatic products decreases from 73.4 to 63.3% with an increase in the amount of added titanium, and with an increase in methane formation from 24 to 30.8%. The quantitative composition of products of aromatization of propane to benzene, toluene, ethylbenzene and xylenes without the presence of oxidants varies depending on the titanium content of the catalyst selected for aromatization of arenes in the presence of a catalyst with high catalytic activity and productivity without the presence of oxidants. Thus, the content of polynuclear hydrocarbons: benzene increased from 27.0 to 35.4% with an increase in titanium concentration..

 

References:

  1. Bhan, A.; Delgass, W.N. Propane Aromatization over HZSM-5 and Ga/HZSM-5 Catalysts. Catal. Rev. 2008, 50, 19–151.
  2. Zhang, P.; Tan, L.; Yang, G.; Tsubaki, N. One-pass selective conversion of syngas to paraxylene. Chem. Sci.2017, 8, 7941–7946.
  3. Guisnet, M.; Gnep, N.S.; Alario, F. Aromatization of short chain alkanes on zeolite catalysts. Appl. Catal.A Gen. 1992, 89, 1–30.
  4. Al-Yassir, N.; Akhtar, M.N.; Al-Khattaf, S. Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: A comparative study with Ga/HZSM-5. J. Porous Mater. 2012, 19, 943–960.
  5. Su, X.; Wang, G.; Bai, X.; Wu, W.; Xiao, L.; Fang, Y.; Zhang, J. synthesis of nanosized HZSM-5 zeolitesisomorphously substituted by gallium and their catalytic performance in the aromatization. Chem. Eng. J. 2016, 293, 365–375.
  6. Choudhary, V.R.; Sivadinarayana, C.; Kinage, A.K.; Devadas, P.; Guisnet, M. H-Gallosilicate (MFI) propane aromatization catalyst Influence of calcination temperature on acidity, activity and deactivation due to coking. Appl. Catal. A Gen. 1996, 136, 125–142.
  7. Montes, A.; Giannetto, G. A new way to obtain acid or bifunctional catalysts: V. Considerations on bifunctionality of the propane aromatization reaction over [Ga,Al]-ZSM-5 catalysts. Appl. Catal. A Gen. 2000, 197, 31–39.
  8. Rodrigues, V.O.; Faro Júnior, A.C. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Appl. Catal. A Gen. 2012, 435, 68–77.
  9. Choudhary, V.R.; Kinage, A.K.; Sivadinarayana, C.; Devadas, P.; Sansare, S.D.; Guisnet, M. H-Gallosilicate (MFI) Propane Aromatization Catalyst: Influence of Si/Ga Ratio on Acidity, Activity and Deactivation Due to Coking. J. Catal. 1996, 158, 34–50.
  10. Han, J.; Jiang, G.; Han, S.; Liu, J.; Zhang, Y.; Liu, Y.; Wang, R.; Zhao, Z.; Xu, C.; Wang, Y.; et al. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics. Catalysts 2016, 6, 13 Catalysts 2020, 10, 622 18 of 19
  11. Al-Yassir, N.; Akhtar, M.N.; Ogunronbi, K.; Al-Khattaf, S. Synthesis of stable H-galloaluminosilicate MFI with hierarchical pore architecture by surfactant-mediated base hydrolysis, and their application in propane aromatization. J. Mol. Catal. A Chem. 2012, 360, 1–15.
  12. Guisnet, M.; Gnep, N.S.; Aittaleb, D.; Doyemet, Y.J. Conversion of light alkanes into aromatic hydrocarbons: VI. Aromatization of C2-C4 alkanes on H-ZSM-5—Reaction mechanisms. Appl. Catal. A Gen. 1992, 87,455–270.
  13. Biscardi, J.A.; Iglesia, E. Isotopic Tracer Studies of Propane Reactions on H− ZSM5 Zeolite. J. Phys. Chem. B 1998, 102, 9284–9289.
  14. Meriaudeau, P.; Naccache, C. Further Evidence on the Change of Acid Properties of H-ZSM-5 by Ga and Pt. J. Catal. 1995, 157, 283–288.
  15. Biscardi, J.A.; Meitzner, G.D.; Iglesia, E. Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts. J. Catal. 1998, 179, 192–202.
  16. Wan H., Pallavi C. Catalytic conversion of propane to BTX over Ga, Zn, Mo and Re impregnated ZSM-5 catalysys. J. Anal. Appl. Pyrolysis. 2016. Vol. 121, P. 369–375.
  17. Zaikovskii V.I., Vosmerikova L.N., Vosmerikov A.V. Nature of the Active Centers of In-, Zr-, and Zn-Aluminosilicates of the ZSM-5 Zeolite Structural Type. Russian Journal of Physical Chemistry. 2018. Vol. 92 (4), P. 689-695.
  18. Erofeev V.I., Khasanov V.V., Dzhalilova S.N., Reschetilowski W.P., Syskina A.A., Bogdankova L.A. Acidic and Catalytic Properties of Zeolites Modified by Zinc in the Conversion Process of Lower C3–C4 Alkanes. Catalysts. 2019. Vol. 9, Р. 421.
  19. Khasanova E.I., Nazmieva I.F., Ziyatdinov A.S., Salakhov I.I., Kopylov A.Y. A study of propane aromatization on a zeolite-containing catalyst with different Si/Al ratios. Petr. Chem. 2012. Vol. 52, P. 79–85.
  20. Gabrienko A.A., Arzumanov S.S., Freude D., Stepanov A.G. Propane Aromatization on ZnModified Zeolite BEA Studied by Solid-State NMR in Situ. Journal of Physical Chemistry C. 2010. Vol. 114, P. 12681-12688.
  21. 21.Liu R. et al. Aromatization of propane over Ga-modified ZSM-5 catalysts //Journal of Fuel Chemistry and Technology. – 2015. – Т. 43. – №. 8. – С. 961-969.
  22. Al-Yassir N., Akhtar M. N., Al-Khattaf S. Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5 //Journal of Porous Materials. – 2012. – Т. 19. – С. 943-960.
  23. Al‐Zahrani S. M. Catalytic Conversion of LPG to High‐Value Aromatics: The Current State of the Art and Future Predictions //Developments in Chemical Engineering and Mineral Processing. – 1998. – Т. 6. – №. 1‐2. – С. 101-120.
  24. Coelho A. et al. 1-Butene oligomerization over ZSM-5 zeolite: Part 1–Effect of reaction conditions //Fuel. – 2013. – Т. 111. – С. 449-460.
Информация об авторах

Doctor of Technical Sciences, Professor, Department of Polymer Chemistry and Chemical Technology, Samarkand State University, Republic of Uzbekistan, Samarkand

д-р техн. наук, профессор, кафедра химии полимеров и химической технологии, Самаркандский государственный университет, Республика Узбекистан, г. Самарканд

Intern teacher of the Department of Chemical Technology at the Karshi engineering-economics institute, Republic of Uzbekistan, Karshi

стажер-преподаватель кафедры химической технологии Каршинского инженерно-экономического института, Республика Узбекистан, г. Карши

Associate professor of the Department of Chemical Technology at the Karshi engineering-economics institute, Republic of Uzbekistan, Karshi

доцент кафедры химической технологии Каршинского инженерно-экономического института, Республика Узбекистан, г. Карши

Associate professor, PhD, Karshi Institute of Engineering-Economics, Republic of Uzbekistan, Karshi

канд. техн. наук, доцент, Каршинский инженерно-экономический институт, Республика Узбекистан, Республика Узбекистан, г. Карши

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top