Assistant teacher of the Karshi Engineering Economics Institute, Uzbekistan, Bukhara
TECHNOLOGY OF COMPLEX PRODUCTION OF CORROSION INHIBITOR FOR OIL AND GAS WELLS
ABSTRACT
This article provides information on the technological possibilities of obtaining a corrosion inhibitor with complex-forming free electron pairs. Also, in the technological process, the synthesis process is carried out in a jacketed reactor for neutralization of raw materials, and then the product is sent to the reactor. The products produced in the reactor are sent to the second jacketed reactor. The products coming out of the reactor are cleaned, passed through a cooler and sent to packaging. The parameters of the time, temperature and pressure required to obtain the finished product are given. The regimes of all processes were studied and the material balance was developed.
АННОТАЦИЯ
В данной статье приведены сведения о технологических возможностях получения ингибитора коррозии с комплексообразующими свободными электронными парами. Также в технологическом процессе процесс синтеза осуществляется в реакторе с рубашкой для нейтрализации сырья, а затем продукт направляется в реактор. Продукты, полученные в реакторе, направляются во второй реактор с рубашкой. Продукты, выходящие из реактора, очищаются, проходят через охладитель и направляются на упаковку. Приведены параметры времени, температуры и давления, необходимые для получения готового продукта. Изучены режимы всех процессов и разработан материальный баланс.
Keywords: jacketed reactor, capacity, YJB corrosion inhibitor, propane, sodium hydrosulfide, hydrogen chloride, dryer, raw materials.
Ключевые слова: реактор с рубашкой, производительность, ингибитор коррозии YJB, пропан, гидросульфид натрия, хлористый водород, сушилка, сырье.
Introduction. In the world, derivatives of compounds with different functional groups, which have free electron pairs, are widely used in the fields of economy, pharmaceuticals, chemical industry, textiles, paint and oil and gas chemistry[1-4]. As a result of the development of the oil and gas industry in the world, targeted scientific research is being carried out on the creation of effective corrosion inhibitors to prevent corrosion of metal structures used in the industry under the influence of various aggressive environments. In this regard, special attention is being paid to the creation of a new generation of highly effective inhibitors based on common natural resources, the synthesis of new corrosion inhibitors, the determination of their properties, and the development of technology for the creation of effective and import-substituting inhibitors based on them[5-8].
Materials and methods. The structure of the synthesized corrosion inhibitor was analyzed by IR spectroscopy(figure 1). It is distinguished by the presence of corresponding absorption peaks characteristic of the structure of the corrosion inhibitor.
Figure 1. IR spectrum image of synthesized YJB corrosion inhibitor
The characteristic absorption areas in the IR spectrum of YJB are as follows: 3300 cm-1 (R)2-NH, ≡C-H 3310-3200 cm-1, -N=N- 1600 cm-1, RHC=CH2 1645 cm-1, -CH2 - 1480-1440 cm-1, -CH3- 1470-1435 cm-1, (R)3P=O 1175 cm-1, (R)2S=O 1050 cm-1, observed in the field.
Based on the proposed technology (Fig. 2), a mixture of reagents (HCl and 10% hypan) required for the composition is sent to the jacketed reactor (4) for neutralization through tanks (1; 2) in a ratio of 1:10. A white gel product is formed in this reactor (4) at a temperature of 25ºC-35 ºC, a pressure of 1 atm, a frequency of 100-125 rpm and a duration of 30 minutes. The resulting product is sent to the second jacketed reactor (4). A mixture of (NaHSO3) with a ratio of 35-40% relative to the carbonyl group is sent to the second jacketed reactor (4) through the capacity (5). In this reactor (4) at a temperature of 65 ºC -75 ºC, a pressure of 1 atm, a frequency of 200-250 rpm and a duration of 60 minutes, a red-brown thick mass with a high viscosity is formed. This product is fed to the belt using the elevator (6), and the product is sent to the dryer (7) through the belt. The dryer (7) is supplied with air from the lower part and discharged from the upper part to improve the drying process. The product is dried at a temperature of 85ºC -95ºC for 30 minutes. The belt dryer is designed for continuous drying of non-toxic, dispersible (granular, granular, fibrous) products with an initial moisture content of up to 75% at atmospheric pressure with hot air. a belt dryer looks like a rectangular box, which is divided into several sections (from 3 to 10) in length, and divided into two corridors in width.
Figure 2. Technological scheme of production of complex forming corrosion inhibitor for oil and gas wells
1-2-5 capacity, 3-mixer, 6-elevator, 7-dryer 8- extractor, 9-packing
A continuous transport conveyor (belt) is placed inside the corridor on the right (by product movement). The product to be dried moves on the tape. Steam radiators are placed in the corridor on the left side. The width of the tape is 1.2 or 2 m, its working surface is from 7.2 to 40 m2, and the required power can vary from 22 to 137 kW. The efficiency of the belt dryers of different models varies from 35 to 600 kg/h. The dried raw material is sent to the extractor (8) for separation into extractions. After the extractor (8), the finished product divided into extractions is sent to the packaging device (9) for packaging.
Table 1.
Cost of raw materials
№ |
Raw materials |
Product addition ratio |
1 |
HCl |
1:10 |
2 |
10%li HYPAN |
1:10 |
3 |
NaHSO3 |
With respect to the functional group-14-16 % |
Conclusion. Based on the proposed technology, a continuous corrosion inhibitor production technology with 87% efficiency has been developed and the process control is available. By using the YJB substance created from this technological production scheme as a corrosion inhibitor, it will be cheaper than analogues imported from abroad, and the efficiency will be higher.
References:
- V.N Axmedov., K.E Ro‘zieva., M.S Raxmatov., N.Sh.Panoev., H.R Ro‘ziev., S.M Murodjonov. Gidrofob sement olishning ba’zi aspektlari // Fan va texnologiyalar taraqqiyoti. Ilmiy-texnikaviy jurnal, Buxoro, 2018 №1. 69-73b.
- Axmedov V.N., Niyozov L.N., Panoev N.Sh., Vaxmudjonov S.M. Production and application of hudrophobizing polimer compositions // International journal of advanced research in science, Engeneering and Technology, India, Vol. 5, Issue 11, November 2018. page7340-7345.
- L.N.Niyazov., Panoev N.Sh., V.N.Axmedov., S.M Murodjonov., A.A Xaydarov. Gidrofobizatsiya sementnыx i keramicheskix izdeliy s ispolzovaniem vodorastvorimix kremniyorganicheskix soedineniy // Kompozitsionnыe materialы Uzbekskiy nauchno-texnicheskiy i proizvodstvennыy jurnal, 2019. №1. S106-109
- N.Sh Panoev., V.N.Axmedov. Kremniyorganik birikmlar asosidagi teploizolyatsion qoplamalarning yangi tarkibini yaratish va xossalarini o‘rganish // Fan va texnologiyalar taraqqiyoti. Ilmiy-texnikaviy jurnal, Buxoro, 2019 №3. 64-69 b.
- V.N.Axmedov., L.N.Niyazov.,K.E.Ruzieva., F.F Raximov., Panoev N.Sh. Gidrofobizatsiya v stroitelstve. (monografiya).- Izdatelstvo Buxara, Durdona, 2018. c160.
- V.N Axmedov., M.S Raxmatov., N.Sh.Panoev. Texnologiya polucheniya kompozitsiy na osnove kremniyorganicheskыx gidrofobiziruyuщix polimerov // II international scientific conference of young researchers. Baku, 2018. s 472-474.
- B. Sobirov., V.N Axmedov., N.Sh.Panoev. Vliyanie parametrы na vыxod kremniyorganicheskыx monomerov // Sbornik trudov mejdunarodnoy nauchno-texnicheskoy konferensii studentov, magistrantov na temu Molodej-zalog budusheva velikoy stepi. Shыmkent, 2019. S 294-296.
- V.N. Axmedov, N.Sh. Panoev, S.M. Maxmudjonov. Poluchenie gidrofobiziriyuщix kompozitsii polimerov i ix primenenie v stroitelstve // II Vserossiyskaya molodejnaya nauchno-prakticheskaya konferensiya Ekologicheskie problemы promыshlenno razvitыx i resursodobыvayuщix regionov: puti resheniya 2018. 20-21 dekabrya.