PRINCIPAL TECHNOLOGICAL SCHEME OF PRODUCTION OF TSU-1 FOAM EXTINGUISHER

ПРИНЦИПНАЯ ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА ПЕНОГАСИТЕЛЯ ТСУ-1
Цитировать:
PRINCIPAL TECHNOLOGICAL SCHEME OF PRODUCTION OF TSU-1 FOAM EXTINGUISHER // Universum: технические науки : электрон. научн. журн. Toshboev S. [и др.]. 2024. 8(125). URL: https://7universum.com/ru/tech/archive/item/18092 (дата обращения: 18.12.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2024.125.8.18092

 

ABSTRACT

This article provides information on the technological scheme of the TSU-1 defoamer with a new composition, synthesized to reduce foaming in absorbers during the amine purification of gases from sour components (H2S and CO2). Also, in the technological scheme, the parameters of the time, temperature and pressure required for the production of the finished product after the raw materials are separated into fractions in the rectification boilers, the synthesis process is carried out in the jacketed reactor, and then the finished product is obtained.

АННОТАЦИЯ

В статье представлена ​​информация о технологической схеме пеногасителя ТСУ-1 с новым составом, синтезированного для снижения пенообразования в абсорбентах при аминной очистке газов от кислых компонентов (H2S и CO2). Также в технологической схеме указаны параметры времени, температуры и давления, необходимые для получения готового продукта после разделения сырья на фракции в котлах-ректификаторах, процесс синтеза проводится в реакторе с рубашкой, а затем получается готовый продукт.

 

Keywords: jacketed reactor, capacity, TSU-1 defoamer, boric acid, hydrogen peroxide, waste hexane, rectification tank, raw materials.

Ключевые слова: реактор с рубашкой, емкость, пеногаситель ТСУ-1, борная кислота, перекись водорода, отработанный гексан, ректификационная емкость, сырье.

 

Introduction. Today, one of the main problems in gas processing plants is the loss of amine solution (absorbent) during the absorption process. The main reason for this is that in the process of cleaning gases from sour components with amine solutions, it foams as a result of various effects, and a certain part of the amine solution comes out with the purified gas and passes into the saturated amine solution. Normal foam turns into foam by contaminating surfactants. The most common foam control method is to add antifoam chemicals to the circulating solution stream to suppress foam[1]. Foaming in the absorber device during the amine gas purification process occurs due to various reasons.

Chemical methods of combating foaming are widely used in various fields. This method is very effective and sometimes the only acceptable method. A drop of defoamer is attracted to the bubble and spreads over the separation surface, reducing the film strength. As a result, small bubbles coalesce into larger ones, which are less stable and burst as they rise to the surface[2]. Therefore, the demand for chemicals that reduce or eliminate foaming is very high today. In order to eliminate this problem, foam extinguishers were synthesized. This article describes the production technology of foam extinguishers.

Experimental parts. Based on the proposed technology (Fig. 1), a mixture of reagents (waste hexane) required for the composition was sucked from the tank (1) using a pump (7). After that, it was sent to the rectification furnace (2) for fractionation. In the rectification boiler (2), the temperature was 130ºC-170ºC, the pressure was 1.5-2 atm, and the time duration was 30 seconds[3-5].  Fraction II from the rectification boiler (2) was sent to the jacketed reactor (3) at 130ºC-170ºC to carry out the synthesis process with waste hexane mixture with oxidants in a ratio of 1.1:1 [6-8]. Oxidizing compounds (boric acid and hydrogen peroxide) in a 1:1 ratio were sent to the jacketed reactor (3) through the upper capacity (4). Products were mixed using a mixer (8) in a jacketed reactor (3). In order to provide heat, hot water was introduced from the lower part of the reactor (3) and discharged from the upper part. In the reactor (3), the temperature difference increased to 60ºC in the first 30 minutes, and from the next 45 minutes it was kept around 85ºC-90ºC.

 

Figure 1. The principle technological scheme of obtaining TSU-1 foam extinguisher

1- pump, 2- rectification boiler, 3- jacket reactor, 5- rectification boiler, 6- finished product capacity, 8- mixer, 9- manometer. Fraction II waste hexane product at a temperature of 130ºC-170ºC.

 

From the 55th minute to the 120th minute, it was 95ºC-105ºC[9-11].  The temperature in the jacketed reactor (3) was maintained in the range of 95ºC-105ºC, the pressure was 1.3-1.8 atm., and the duration of the process was 120 minutes[12-14]. The resulting product was sucked from the lower part of the jacketed reactor (3) using a pump (7). Then, it was inserted from the middle part of the rectification skull (5) to divide it into fractions. In the rectification chamber (5), the temperature was 94ºC-103ºC, the pressure was 1-1.7 atm, and the time duration was 30 minutes. The light fraction unreacted product from the upper part of the rectification boiler (5) was circulated back to the jacketed reactor (3) for processing. The TSU-1 foam quencher obtained at a temperature of 95ºC-105ºC was sent to the finished product capacity (6). For a certain period of time, the TSU-1 foam extinguisher was stored in the tank (6) for cooling purposes. After cooling, the finished product was removed from the container (6). Table 1 below shows the addition ratios of all reagents used for the synthesis process: boric acid, waste hexane, and hydrogen peroxide.

Table 1.

Raw material consumption ratio

Raw materials

Ratio of components

1

waste hexane

1,1

2

boric acid

1

3

hydrogen peroxide

1

 

Conclusion. In this article, it can be concluded that a mixture of fraction II waste hexane at a temperature of 130ºC-170ºC was used to obtain the TSU-1 foam extinguisher. The pressure in the jacketed reactor used for its production was 1.3-1.8 atm, the temperature was 95ºC-105ºC, and the time duration was 120 minutes. TSU-1 synthetic foam extinguisher was produced for the purpose of extinguishing the foam generated during the gas cleaning process. Also, the laboratory tests on extinguishing the foam formed in the absorber during gas cleaning were successfully carried out. The following results were obtained on the basis of various analyzes of the TSU-1 substance synthesized on the basis of this technological production scheme: the economic effect of using a foam suppressor is effective in suppressing the foam formed in the absorber during gas purification;

It was found that it is much cheaper than analogues brought from abroad, and the coefficient of useful work is high.

 

References:

  1. Sardor Toshboev.  Vohid Akhmedov. Erali Panoev. Bobir Olimov. Analysis of the anti foaming solution tsu, obtained on the basis of local antifoaming raw materials arising from gas cleaning. UNIVERSUM  №4 (118) Aprel 2024.
  2. Тошбоев С. У, Axмедов В. Н, Панoeв, Э. Р. Исследование Процессов Пенообразования При Аминной Очистке Газов Central Asian Journal of Theoretical and Applied Science (CAJOTAS) ISSN: 2660-5317. Table of Content - Volume 4 No 10 (Oct 2023) https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1313.,163-169.
  3. Паноев Эрали Ражаббоевич, Дустов Хамро Бозорович, & Ахмедов Вохид Низомович (2021). ПРОБЛЕМЫ КОРРОЗИИ В КИСЛЫХ КОМПОНЕНТНЫХ СИСТЕМАХ И СПОСОБЫ ЕЕ УМЕНЬШЕНИЯ. Universum: технические науки, (12-5 (93)), 47-50.
  4. Toshboev S, Akhmedov V, Panoev E. Synthesis of higher fatty acid compound esters of higher fatty alcohols // Mejdunarodnaya nauchno-texnicheskaya konferensii «Problemы, innovatsionnыe predlojeniya i resheniya v neftegazoximii i texnologii» provedennoy 14-15 dekabrya 2023 goda v Buxarskom injenerno – texnologicheskom institute. 2023.–P. 71-74
  5. Toshboev S. U, Axmedov V. N, Panoev, E. R. Issledovanie Protsessov Penoobrazovaniya Pri Aminnoy Ochistke Gazov Central Asian Journal of Theoretical and Applied Science (CAJOTAS) ISSN: 2660-5317. Table of Content -Volume 4 No 10 (Oct 2023) https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1313.,163-169. 
  6. Toshboev S, Panoev E. Foaming processes in amine gas purification // models and methods for increasing the efficiency of innovative research: a collection scientific works of the international scientific conference (11 october 2023) - berlin:2023. part 27 – 215 p. https://interonconf.org/index.php/ger/article/view/7314/6317.
  7. S.Oʻ. Toshboyev, V.N. Axmedov, E.R. Panoyev, S.B. Usmonov «Kimyoning dolzarb muammolari» mavzusidagi Respublika ilmiy-amaliy anjuman materiallari Urganch (2024-yil 21-22-iyun).
  8. Хайитова, Д. Ф., Жамолов, Ж. Ж., Паноев, Э. Р., & Мирзаев, Э. Э. (2023). ЮҚОРИ ҲАРОРАТГА ЧИДАМЛИ КОРРОЗИЯ ИНГИБИТОРИНИ ОЛИШ УСУЛИInnovative Development in Educational Activities2(1), 9-13.
  9. Паноев, Э. Р., Мирзаев, Э. Э., & Хайитова, Д. Ф. ЖЖ Жамолов Виды коррозионных процессов, причины их классификации и происхождения, методы защиты от них. In France international scientific-online conference:“Scientific approach to the modern education system” colletions of scientific works. Part (Vol. 3, pp. 74-78).
  10. Toshboyev S.O‘., Xafizov A.R., Axmedov V.N., Panoyev E.R. Gazlarni nordon komponentlardan tozalash qurilmalarida ko‘piklanish sabablari va uni oldini olish  QarDU xabarlari ilmiy-nazariy, uslubiy jurnal. 2024 (2) 2
  11. E Panoev, M Murodov, D Xayitova, J Jamolov A Method for Reducing Corrosion During Gas Purification from Sulfur Components- Texas Journal of Engineering and Technology, 2022.
  12. Панoeв, Э. Р., Дустoв XБ, М. Э., & Xайитoва ДФ, Ж. Ж. (2023). Исслeдoваниe эффeктивнoсти примeнeния различныx ингибитoрoв на нeфтeпeрeрабатывающиx завoдаx.
  13. Panoev Erali, Murodov Malikjon, Bozorov Gayrat, & Usmonov Safar (2022). A METHOD FOR REDUCING CORROSION DURING GAS PURIFICATION FROM SULFUR COMPONENTS. Universum: технические науки, (10-7 (103)), 9-13.
  14. Toshboyev S.O’, Do’stov H.B, Axmedov V.N, Panoyev E.R, Ostonov F.I. Gazlarni absorbsion tozalashda ko’piklanish jarayonini tadqiq qilish. “Fan va Texnologiyalar taraqqiyoti” Ilmiy Texnikaviy jurnal. №1/2024 115 ISSN 2181-8193
Информация об авторах

Teacher of Bukhara College of Oil and Gas, Republic of Uzbekistan, Bukhara

преподаватель Бухарского колледжа нефти и газа, Республика Узбекистан, г. Бухара

Deputy Director of Bukhara College of Oil and Gas Industry for Educational and Educational Affairs, Republic of Uzbekistan, Bukhara

заместитель директора Бухарского колледжа нефти и газа по учебной и воспитательной работе, Республика Узбекистан, г. Бухара

Associate Professor Of the Bukhara Engineering and Technological Institute, Republic of Uzbekistan, Bukhara

доцент, Бухарский инженерно-технологический институт, Республика Узбекистан, г. Бухара

PhD, docent of the Department of Chemistry Bukhara Engineering and Technology Institute, Republic of Uzbekistan Bukhara

PhD, и.о. доц. кафедры химии Бухарского инженерно-технологического института, Республика Узбекистан, г. Бухара

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top