ESTIMATION OF THE EFFICIENCY OF A 60 KW PHOTOVOLTAIC SYSTEM ON THE GRID

ОЦЕНКА ЭФФЕКТИВНОСТИ ФОТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ 60 КВТ СЕТЕВОЙ
Rahimov A. Usmonov T.
Цитировать:
Rahimov A., Usmonov T. ESTIMATION OF THE EFFICIENCY OF A 60 KW PHOTOVOLTAIC SYSTEM ON THE GRID // Universum: технические науки : электрон. научн. журн. 2024. 6(123). URL: https://7universum.com/ru/tech/archive/item/17786 (дата обращения: 21.11.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2024.123.6.17786

 

ABSTRACT

In this research paper, 60 kW photovoltaic autonomous energy connected to the power grid carefully examines the efficiency, performance, and technical capabilities of the system, including daily, monthly, and annual bills. Efficiency analysis is crucial to optimize the power output and financial return of a photovoltaic system. A systematic approach monitors energy production and evaluates various performance indicators. The daily analysis is aimed at the immediate reaction of the system to environmental conditions such as sunlight and temperature fluctuations. The daily monthly calculations of the system as a result of climate change provide daily data to determine changes and impacts, while the annual review provides a holistic view of the system's performance, including wear indicators and maintenance efficiency.

АННОТАЦИЯ

В этой исследовательской работе фотоэлектрическая автономная энергия мощностью 60 кВт, подключенная к электросети, тщательно изучает эффективность, производительность и технические возможности системы, включая ежедневные, ежемесячные и годовые счета. Анализ эффективности имеет решающее значение для оптимизации выходной мощности и финансовой отдачи фотоэлектрической системы. Систематический подход контролирует производство энергии и оценивает различные показатели эффективности. Ежедневный анализ направлен на немедленную реакцию системы на условия окружающей среды, такие как солнечный свет и колебания температуры. Ежедневные ежемесячные расчеты системы в результате изменения климата предоставляют ежедневные данные для определения изменений и воздействий, а ежегодный обзор дает целостное представление о работе системы, включая показатели износа и эффективность технического обслуживания.

 

Keywords: PV systems, daily efficiency, monthly analysis, annual assessment, solar energy, solar energy production, system monitoring, energy production forecasting, energy efficiency, capacitor banks, photovoltaic solar battery, power, grid connection, power monitoring, charge control, energy production, regulate power output.   

Ключевые слова: Фотоэлектрические системы, ежедневная эффективность, ежемесячный анализ, годовая оценка, солнечная энергия, производство солнечной энергии, системный мониторинг, прогнозирование производства энергии, энергоэффективность, конденсаторные батареи, фотоэлектрические солнечные батареи, мощность, подключение к сети, мониторинг мощности, контроль заряда, производство энергии, регулировать выходную мощность.

 

1. Introduction

For photovoltaic systems with a capacity of 60 kW, various monitoring systems provide information about power, voltage, current, and overall system performance in real-time. These systems can monitor daily, weekly, monthly, and annual production, receive all information, and warn of any problems or maintenance needs.

The basis of the operation of a solar power plant connected to the grid is the performance of a network inverter. The inverter will work only when the mains are switched on, and its main function is to convert solar energy coming from photovoltaic modules into AC output power for the power supply of the network.[1,2]

Photovoltaic  solar  cells  can  handle  530W  and 12.6A  current.  In  total,  the  power  is  60kWh,[4] the highest level of energy consumption in The average power in March, April, and May is 43,395 kW, and the lowest is in December. At the same time, the average daily performance of the system in December was 7585 kW.  Similar studies can serve as a guide for comparing the performance of systems of similar size, for example, the power of 60 kW in question.

Data collection systems or monitoring applications adapted to a specific solar device and its specific environmental conditions are the ideal systems for more detailed and customized performance analysis. The data obtained can then be used to calculate key performance indicators and optimize the system accordingly.

2. Experiments

 Data from the inverter can be continuously recorded in real-time based on the values obtained, taking into account external factors and various parameters. Real-time data showed that seasonal changes have a significant impact on the performance of the photovoltaic system [3]. We can also see this clearly by analyzing only the December values of the ridge voltage and current. The value shown in the table above displays real-time data for the on-grid inverter in December. The number of solar panels used in the PV on Grid system is 120, and the total power ranges from 540 to 60 kW.  These values are shown in Table 1.

Table 1.

Values

The voltage of the photovoltaic system U (V)

Current in the photovoltaic system I (A)

V1

433.2

(I) 1

1.65

V2

433.2

(I) 2

1.78

V3

435.1

(I) 3

1.47

V4

435.1

(I) 4

1.41

V5

436.5

(I) 5

1.53

V6

436.5

(I) 6

1.66

V7

315.1

(I) 7

1.53

V8

315.1

(I) 8

1.54

V9

434.4

(I) 9

1.53

V10

434.4

(I) 10

1.54

V11

436.5

(I) 11

1.43

V12

436.5

(I) 12

1.58

 

The electrical energy transmitted by the PV on the Grid system is converted into alternating current and transferred from the auxiliary network to the main network to the main network. and displays the values of the output voltage and current in real-time instantaneous values in phase 3 connected to the main network. Its values are shown in Table 2.

Table 2.

Values

The voltages in the three-phase electrical network are equal to U (V).

Ua

Ub

Uc

235,6

241,6

219,7

Currents in the three-phase electrical network I (A).

Ia

Ib

Ic

10,76

10,56

10,55

 

In this method, the active power is continuously monitored, and the output power is regulated by the input voltage of the inverter. The controller provides the maximum active power and the power factor in the network at the same value and also serves to adjust the power supplied to the network. The actual values obtained in March are shown in Table 3.

Table 3.

Values

The voltage of the photovoltaic system U (V)

Current in the photovoltaic system I (A)

V1

444.2

(I) 1

4.96

V2

444.2

(I) 2

4.61

V3

441.1

(I) 3

4.92

V4

441.1

(I) 4

4.70

V5

442.5

(I) 5

4.53

V6

442.5

(I) 6

5.00

V7

415.1

(I) 7

9.53

V8

415.1

(I) 8

4.72

V9

444.4

(I) 9

4.67

V10

444.4

(I) 10

4.82

V11

440.5

(I) 11

4.63

V12

440.5

(I) 12

4.97

 

The actual values in the table are listed separately. The values of voltage and current in the network are shown separately for each section. When designing any power supply system, schedules of daily, weekly, monthly, and annual load changes are very important, at which connection to this system is planned. In practice, the collection of such data requires significant power and time resources, in this case, it is necessary to work with separate estimated values, as a result of which an excess of power appears in power supply systems, operating either in constant voltage mode or with a lack of energy shown in Table 4.

Table 4.

Voltage mode or with a lack of energy

The voltages in the three-phase electrical network are equal to U (V).

Ua

Ub

Uc

238,6

248,0

234,9

Currents in the three-phase electrical network I (A).

Ia

Ib

Ic

35,16

35,08

34,89

 

The inverter, designed for photovoltaic batteries connected to the mains, can synchronize the output sinusoidal current with the mains voltage. This device allows you to transfer and use data directly on the network. Its own parameters and technical specifications are given in Table 5.

Table 5.

Parameters and technical specifications

Current power (kW)

45.718

Peak power of the current day (W)

47.243

Income today (kWh)

103.66

Total income (MWh)

5.41

Input power (kW)

7.592

Power factor

1.000

Power supply frequency (Hz)

50.01

Active power (kW)

7.413

Reactive power (Kvar)

-0.038

Case Temperature (C)

42.2

 

From the data obtained from the photovoltaic system in real-time during the winter and spring months in the tables above, it can also be seen that the efficiency of the photovoltaic system decreases significantly during the winter months.

The output power of a 60 kW photovoltaic system is in the range of 8 - 15 MW per year, depending on climate change and natural conditions, and the effective operating power of the photovoltaic system falls in the spring and summer months. The schedule for changing this is shown in Figure 1.

 

Figure 1. Daily load consumption of a remotely located building

 

The graph above shows the daily power of a photovoltaic system for generating electricity and its instantaneous values in real-time with a graph of power changes. Also, energy yield - is the instantaneous output of electricity from the inverter, and energy yield power –is a change in the power of energy production, the values listed are as follows in the below this is Figure 1. 

PV generation system to be studied for the LPSP simulation. It consists of the PV array connected to the MPPT converter. The MPPT converter is connected to a DC bus. The battery bank is connected to the bidirectional DC/DC converter for charging and discharging of the battery bank. Then, the three phase inverter is then connected to the load. [3]

Hardware development consists of the physical parts that make up the proposed system, namely the IoT monitoring platform, photovoltaic system, and load. In this research, the development of physical devices is more focused on the IoT monitoring platform which consists of sensors, IoT modules, microcontrollers, data loggers,[3,4] and relays as shown in Figure 1.

3. Results and discussion

This study used online monitoring of a solar photovoltaic system using solar panels. The results of the study showed that electricity production increases in spring and summer compared to the winter months. But the most frequently used energy consumption season is in the winter months. The results obtained in real-time will be daily and monthly, with general online monitoring of the annual electricity bill. It can be of different levels depending on the type and power of the converter (inverter).

The above table 1-2 shows the daily production of electricity by a 60 kW solar panel system during the winter months. Additional tables 3-4 show the daily amount of electricity generated by the photovoltaic system in the spring months, in instantaneous values. Due to the increasing number of consumers, the daily amount of electricity generated by the solar panel system will also need to be increased and increased.[5].

4. Conclusion

Daily, monthly, and annual analysis of a 60 kW photovoltaic system connected to the grid reveals complex details of its efficiency and operational characteristics. By implementing online monitoring tools to continuously monitor output power, voltage, and current, stakeholders can make decisions about system optimization based on the data obtained. Daily monitoring allows you to instantly respond to fluctuations that may be caused by environmental changes or structural anomalies.  The extensive data collected annually helps to assess the overall condition of the photovoltaic system, the level of component performance, and the effectiveness of maintenance methods.

 

References:

  1. Sukumaran S and Sudhakar K “Performance analysis of solar-powered airport based on energy and exergy analysis”. Energy 149: 1000–1009 https://doi.org/10.1016/j.energy.2018.02.095  [in India].
  2. K Jeykishan Kumar, R Sudhir Kumar, and Tulika Bhattacharjee. “Alternate method for evaluating power-temperature derating characteristics of grid tie solar photovoltaic inverter” Indian Academy of Sciences.  https://doi.org/10.1007/s12046-021-01646-9  [in India].   
  3. Razman Ayop, Normazlina Mat Isa, Chee Wei Tan. Components sizing of photovoltaic stand-alone system based on loss of power supply probability” Renewable and Sustainable Energy Reviews Volume 81, Part 2, January 2018, Pages 2731-2743 [in Malaysia].
  4. B.Z. Khaydarov, A.A.Rakhimov, “Solar panels to improve reactive current compensation in load photoelectric systems” Eurasian Research Bulletin, Volume 18|March, P a g e| 143. 2023.[in Belgium].
  5. Рахимов А.А, Холматов Э.С, Хамдамов Д.Х. “Способы компенсации реактивной мощности в нагрузке фотоэлектрических установок”. Scientific-technical journal. ФерПИ, 2022, Т.26. №15. 172-174.[in Uzbekistan]
Информация об авторах

Assistant, Ferghana Polytechnic Institute, Uzbekistan, Fergana

ассистент, Ферганский политехнический институт, Узбекистан, г. Фергана

Assistant, Ferghana Polytechnic Institute, Uzbekistan, Fergana

ассистент, Ферганский политехнический институт, Узбекистан, г. Фергана

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top