QUANTUM CHEMICAL ANALYSIS OF FFPA-1 BRANDED CORROSION INHIBITOR

КВАНТО-ХИМИЧЕСКИЙ РАСЧЁТ ИНГИБИТОРА КОРРОЗИИ МАРКИ FFPA-1
Цитировать:
Ishankulova M.M., Beknazarov Kh.S., Ishonkulova G. QUANTUM CHEMICAL ANALYSIS OF FFPA-1 BRANDED CORROSION INHIBITOR // Universum: технические науки : электрон. научн. журн. 2024. 5(122). URL: https://7universum.com/ru/tech/archive/item/17445 (дата обращения: 22.07.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2024.122.5.17445

 

ABSTRACT

In this article, the quantum chemical analysis of FFPA-1 brand corrosion inhibitor synthesized based on monoethanolamine, formalin, and orthophosphoric acid is carried out using Avogadro, Hyper Chem 8.01, Asselrys MS Modeling 3.0.1 software, using limited Semi-empirical (UHF) method, using SCF-MO Calculations were performed on an Intel Pro Pentium 1.40 GHz computer using the semi-empirical AM1, MNDO, PM3 and RM1 methods. Molecular geometry optimization was carried out using the Polak-Ribiere (Conjugate gradient) algorithm. Based on the results of four selected quantum-chemical calculations, it can be concluded that the high values of the negative effective charge in the FFPA-1 corrosion inhibitor molecule are in the C=O, -OH, N-H, P=O, P-OH groups. indicates that it can form five- and eight-membered chelate compounds.

АННОТАЦИЯ

В данной статье описаны результаты исследования кванто-химического анализа ингибитора коррозии марки FFPA-1, синтезированного на основе моноэтаноламина, формалина и ортофосфорной кислоты, проведен с использованием программного обеспечения Avogadro, Hyper Chem 8.01, Asselrys MS Modeling 3.0.1, с использованием ограниченного полуэмпирического (УВЧ) ) с использованием SCF-MO. Расчеты проводились на компьютере Intel Pro Pentium 1,40 ГГц с использованием полуэмпирических методов AM1, MNDO, PM3 и RM1. Оптимизацию молекулярной геометрии проводили с использованием алгоритма Полака-Рибьера (Сопряженный градиент). По результатам четырех выбранных кванто-химических расчетов можно сделать вывод, что высокие значения отрицательного эффективного заряда в молекуле ингибитора коррозии FFPA-1 находятся в группах C=O, -OH, N-H, P=O, P -ОН. Эти группы указывает на то, что он может образовывать пяти- и восьмичленные хелатные соединения.

 

Keywords: phthalamic acid, formalin and orthophosphoric acid, Avogadro, Hyper Chem 8.01, Asselrys.

Ключевые слова: фталаминовая кислота, формалин и ортофосфорная кислота, Авогадро, Hyper Chem 8.01, Asselrys.

 

Introduction

The process of corrosion is a process of chemical and electrochemical as well as biological degradation of metals as a result of environmental effects [1,2]. According to the mechanism of the process, there is chemical, electrochemical, and biochemical corrosion. Corrosion begins at the surface of the metal and spreads deeper with further development of the process. The environment in which metal corrosion occurs is various liquids and gases [3,4]. Various amines, ketones, aliphatic carboxylic acids, and amino acids, as well as products of the interaction of amino alcohols and their derivatives with sulfonamides, carboxylic acids, ethers, and aldehydes, are used as organic inhibitors [5,6]. Amino acids such as glycine, methionine, and histidine glutamic acid are used as inhibitors against steel corrosion in sulfuric acid, aspartic acid in hydrochloric acid, alanine chloride, and sulfuric acid [7,8]. the problem of the occurrence of corrosion damage in metal equipment of the petrochemical industry was studied. An analysis of the quality of water in the system was carried out by taking water samples at certain points of the installation, and an attempt was made to find the causes of equipment corrosion [9,10]. Special attention was paid to the thermal circuit, which includes heat exchange equipment. A detailed description of all components of the scheme, and the principle of operation of some elements of the scheme is given [11,12]. In conclusion, some methods of corrosion prevention and control, including the introduction of inhibitors, are proposed as one of the modern methods of combating heat exchange equipment passages [13,14].

Experimental part

As a result of the study of the "composition-structure-property" system in chemical compounds, it is possible to theoretically estimate the properties, composition, and molecular structure of complex compounds during research. Such information helps to synthesize complex compounds with selected properties, composition, and structure. Creating the basis of theoretical studies of the formation of complex compounds and the possibility of their practical application is one of the urgent problems of the chemistry of coordination compounds in the advanced period of modern science.

Quantum chemical calculation of the reaction property of FFPA-1 brand corrosion inhibitor molecule in Avogadro, Hyper Chem 8.01, Asselrys MS Modeling 3.0.1 by constrained Semi-empirical (UHF) method, using SCF-MO for semi-empirical AM1, MNDO, PM3, and Calculations were performed on an Intel Pro Pentium 1.40 GHz computer using the RM1 method. Molecular geometry optimization was carried out using the Polak-Ribiere (Conjugate gradient) algorithm. These methods make it possible to determine the total energy of the molecule and electron densities of molecular orbitals, as well as the geometric optimization of the studied molecule.

Results and Discussion

One of the important electronic characteristics is the Mulliken effective charges on atoms (CHARGES) and the total energy of the system (TOTAL ENERGY) (Table 1).

Based on the results of four selected quantum-chemical calculations, it can be concluded that the high values of the negative effective charge in the FFPA-1 corrosion inhibitor molecule are in the C=O, -OH, N-H, P=O, P-OH groups. indicates that it can form five- and eight-membered chelate compounds (Table 2).

Table 1.

Effective charge distribution in donor atoms of FFPA-1 branded corrosion inhibitor molecules

Calculation method

FFPA-1 corrosion inhibitor

AM1

 

MNDO

 

PM3

RM1

 

Table 2.

Effective charge values of donor atoms in inhibitor molecules

Atoms

AM1, eV

MNDO, eV

PM3, eV

RM1, eV

 

xxx

 

 

dqO1(C=O)

-0,464

-0,440

-0,510

-0,474

 

dqO1(O-H)

-0,330

-0,324

-0,310

-0,326

 

dqO2(C=O)

-0,464

-0,375

-0,415

-0,384

 

dqN1(NH2)

-0,906

-0,595

-0,520

-0,975

 

dqO1(P=O)

-1,117

-0,658

-0,862

-1,137

 

dqO1(POH)

-0,812

-0,466

-0,694

-0,864

 

dqO2(POH)

-0,824

-0,498

-0,700

-0,905

 

E

-2690,9462 (kkal/mol)

- 2616,1700 (kkal/mol)

-2673,4993 (kkal/mol)

-1816,1677 (kkal/mol)

 

 

HOMO = -1,167 eV

LUMO = 2,119 eV

Figure 1. In 2, the distribution of charge in atoms and the localization of frontier orbitals

The electron density in the HOMO of Figure 1 is located on the oxygen and secondary nitrogen atoms in the -C=O and P=O groups (Figure 1). The energies of the LUMO and HOMO states are also very different for this ligand. Therefore, Figure 1 also creates a strong field, and according to Pearson's principle of "hard and soft acids and bases", the C=O and P=O groups and the secondary nitrogen atoms compete.

Conculusion

According to the obtained calculation results, based on the results of four selected quantum-chemical calculations, it can be concluded that the highest values of negative effective charge in the XXX molecule are in C=O, -OH, N-H, P=O, and P-OH groups. indicates that these atoms can form five- and eight-membered chelate compounds through coordination bonds with metal.

 

References:

  1. Nurilloev Zafar, Beknazarov Khasan and Nomozov Abror, "Production of Corrosion Inhibitors Based on Crotonaldehyde and Their Inhibitory Properties," International Journal of Engineering Trends and Technology., 2022, vol. 70, 8, pp. 423-434, Crossref, https://doi.org/10.14445/22315381/IJETT-V70I8P243.
  2. Narzullaev A.X, Beknazarov X.S, Jalilov A.T and Rajabova M.F, “Studying the Efficiency of Corrosion Inhibitor IKTSF-1, IR-DEA, IR-DAR-20 in 1m HCl,” International Journal of Advanced Science and Technology , vol. 28, no. 15, pp. 113–122. Available At:. http://sersc.org/journals/index.php/IJAST/article/view/1555.
  3. Nomozov A.K et all. Study of processe of obtaining monopotassium phosphate based on  monosodium phosphate and potassium chloride. Chemical Problems.  2023  no. 3 (21). DOI: 10.32737/2221-8688-2023-3-279-293.
  4. Nomozov A, K, et.all. Salsola Oppositifolia acid extract as a green corrosion inhibitor for carbon steel. Indian Journal of Chemical Technology. 2023, 30, 872-877. https://doi.org/10.56042/ijct.v30i6.6553.
  5. Beknazarov, K.S., Dzhalilov, A.T., Ostanov, U.Y., Erkaev, A.M. The inhibition of the corrosion of carbon steel by oligomeric corrosion inhibitors in different media. International Polymer Science and Technology.,2015, 42(4), pp. T33–T37.
  6. Beknazarov Kh.S., Jalilov A.T. Comparative assessment of the effectiveness of antioxidants based on oligomeric derivatives of gossypol and Irganok-1010 in stabilizing polyethylene // Composite materials. 2013. No.2.69-73.
  7. N.K. Gupta, M.A. Quraishi, C. Verma and A.K. Mukherjee, Green Schiff's bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach, RSC Adv., 2016, 6, 102076–102087. doi: 10.1039/C6RA22116E.
  8. M. Lagrenée, B. Mernari, M. Bouanis, M. Traisnel and F. Bentiss, Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media, Corros. Sci., 2002, 44, no. 3, 573–588. doi: 10.1016/S0010-938X(01)00075-0.
  9. N.K. Gupta, M.A. Quraishi, C. Verma and A.K. Mukherjee, Green Schiff's bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach, RSC Adv., 2016, 6, 102076–102087. doi: 10.1039/C6RA22116E.
  10. Джалилов А.Т., Бекназаров Х.С., Нуриллоев З.И., Ганижонов Ж.Г. Исследование ингибирование коррозии стали СТ20 новым ингибитором ИКФ-1//Universum: технические науки: электрон. научн. журн. 2020. № 6 (75) https://7universum.com/ru/tech/archive/item/9616 
  11. Бекназаров Х.С., Джалилов А.Т. Синтез и исследование олигомерного ингибитора коррозии ИКС-АЭХГ-1 // Олигомеры-2015, 2015. С.35.
  12. Нуриллоев З.И., Ганижонов Ж.Г., Бекназаров Х.С. Исследование ингибирования коррозии стали ст20 новым ингибитором икф-1 // Universum: технические науки, 2020. 6-3 (75), с.33-37.
  13. Нарзуллаев А.Х., Бекназаров Х.С., Ниёзкулов Ш.Ш. Синтез растворимой ингибирующей коррозии в воде, нефти, газовом конденсате, содержащем аминокислоты, и изучение влияния алюминия на металл // Universum: технические науки, 2020, 6-3 (75), с. 23-27.
  14. Нуриллоев З.И., Бекназаров Х.С., Джалилов А.Т. Изучение механизма ингибирования разработанных ингибиторов коррозии с поверхностью стали // - Фан ва технологиялар таракиёти” илмий-теникавий журнал, 2019.
Информация об авторах

Assistant, Department of General Medicine, Angren University, Uzbekistan, Angren

ассистент, кафедра Общее лечебное дело Ангренский университет, Узбекистан, г. Ангрен

Head of the Department of General Medicine at Angren University, Uzbekistan, Angren

заведующий кафедрой общей медицины Ангренский университет, Узбекистан, г. Ангрен

Assistant, Department of General Medicine, Angren University. Uzbekistan, Angren

ассистент, кафедра Общее лечебное дело Ангренский университет, Узбекистан, г. Ангрен

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top