CHEMICAL AND MINERALOGICAL PROPERTIES OF ANDESIBAZALT ROCK OF KARAKALPAKSTAN - AS RAW MATERIAL OF PORTLAND CEMENT CLINKER

ХИМИКО-МИНЕРАЛОГИЧЕСКИЕ СВОЙСТВА АНДЕЗИБАЗАЛЬТОВОЙ ПОРОДЫ КАРАКАЛПАКСТАНА – КАК СЫРЬЁ ПОРТЛАНДЦЕМЕНТНОГО КЛИНКЕРА
Цитировать:
Orazimbetova G.J., Ubbiniyazova L.K. CHEMICAL AND MINERALOGICAL PROPERTIES OF ANDESIBAZALT ROCK OF KARAKALPAKSTAN - AS RAW MATERIAL OF PORTLAND CEMENT CLINKER // Universum: технические науки : электрон. научн. журн. 2024. 2(119). URL: https://7universum.com/ru/tech/archive/item/16733 (дата обращения: 09.05.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2024.119.2.16733

 

ABSTRACT

In the Republic of Karakalpakstan, large reserves of erupted mining raw materials not used in industry have been explored, which makes it necessary to ensure the development and targeted support of industries for the production of construction materials. Deepening the economic potential of the region by improving the structure of industries based on mineral raw materials is one of the most important tasks. This work presents the results of the study by a complex of physicochemical methods. chemical and mineralogical compositions of the andesibazalt rock of the Berkuttau site. The results of determining the mineralogical composition of the averaged process sample of andesibazalt rock are well consistent with the data of chemical analysis.

Electron microscopic studies have shown that the andesibazalt texture and structure are characterized by the presence of a porphyry structure in the rock, the bulk is hyalopylite. The main mass is represented by recrystallized glass containing plagioclase leists, small grains of olivine and ore mineral. Numerous microlites of plagioclase leista are randomly oriented and form a thick network. In the interstitial microlites of plagioclase, small grains of olivine are distinguished. Voids are marked in the rock.

The chemical composition of andesibazalt rock by the content of regulated oxides (SiO2=55,30; Al2O3+TiO2=17,69; Fe2O3=8,92; CaO=6,88; MgO = innoticed; SO3 = innoticed; R2O = 2.42)% meets the requirements of O'zDSt 2950:2015 for the chemical composition of aluminosilicate (clay) raw materials used in the production of Portland cement clinker. Content of chloride-ion in the sample is 0.15%.

АННОТАЦИЯ

В Республике Каракалпакстан разведаны большие запасы не использованного в промышленности изверженного горного сырья, что обусловливает необходимость обеспечения развития и адресной поддержки отраслей производства продукции строительных материалов. Углубление экономического потенциала региона за счет совершенствования структуры отраслей промышленности на основе минеральных сырьевых ресурсов является одной из важнейших задач.

В данной работе приведены результаты изучения комплексом физико-химических методов. химического и минералогического составов андезибазальтовой породы Беркуттауского участка.

Результаты определения минералогического состава усредненной технологической пробы андезибазальтовой породы хорошо согласуются с данными химического анализа.

Электронно-микроскопические исследования показали, что андезибазальтовая текстура и структура характеризуется наличием в породе структуры порфиров, основная масса гиалопилитовая. Основная масса представлена раскристаллизованным стеклом, содержащим лейсты плагиоклаза, мелкие зерна оливина и рудного минерала. Многочисленные микролиты лейсты плагиоклаза беспорядочно ориентированы и образуют густую сеть. В интерстициях микролитов плагиоклаза выделяются мелкие зерна оливина. В породе отмечены пустоты .

Химический состав андезибазальтвой породы по содержанию регламентируемых оксидов (SiO2=55,30; Al2O3+TiO2=17,69; Fe2O3=8,92; CaO=6,88; MgO=сл; SO3=сл; R2O=2,42) % соответствует требованиям, предъявляемым O’zDSt 2950:2015 к химическому составу алюмосиликатного (глинистого) сырья, используемого при производстве портландцементного клинкера. Содержание в пробе андезибазальта хлорид-иона-0,15 %.

 

Ключевые слова: андезибазальт, изверженные горные породы, химический и минералогический состав, сырьевые смеси, портландцементный клинкер.

Keywords: andesibazalt, erupted rocks, chemical and mineralogical composition, raw mixtures, portland cement clinker.

 

Introduction. Andesitbasalt, a fine-grained igneous rock with a moderately low content of silica and a low content of alkali metal oxides, consisting in the bulk of the usual microliths of plagioclase, fine grains of pyroxenes, magnetite, titanomagnetite, apatite and volcanic glass [1-6]. Volcanic glass decomposes easily and is replaced by chlorite and other decomposition products.

Basaltic andesites with a high content of volcanic glass are called hyaloandesites. If minerals in basaltic andesites are largely replaced by secondary products, they are called metaandesites [7].

The chemical and mineralogical composition of igneous rocks of basaltic andesite allows them to be used as a mineralizer and aluminosilicate component of cement raw mixtures in the production of Portland cement clinker without reducing the hydraulic activity and operational properties of the obtained cements.

Material and methods. Determination of the phase composition of the basaltic andesite rock of the Berkuttau area was carried out using modern physicochemical methods of analysis, such as chemical, X-ray phase, IR spectroscopic and electron microscopic.

Chemical analysis of raw materials was carried out in accordance with the requirements of GOST 5382-91 “Cements and materials for cement production. Chemical analysis methods ”[8].

The quality assessment of raw materials for the production of clinkers was carried out in accordance with the requirements of O'z DSt 2950: 2015 “Raw materials for the production of Portland cement clinker. Specifications ”[9].

The XRD-6100 X-ray diffractometer has been used for X-ray phase analysis, crystallinity analysis, stress analysis, residual austenite and many other applications. A powder diffractometer of the XRD-6100 type (X-Ray Diffractometer) for the analysis of polycrystalline substances, the filter of which was a Cu-Kα anode tube with an X-ray radiation wavelength λ = 1.5418 Å [10, 11].

Infrared Fourier spectrometer "IRTracer-100" (SHIMADZU CORP., Japan, 2017) complete with an attachment of disturbed total internal reflection (ATR) MIRacle-10 with a diamond / ZnSe prism (spectral range on a wave number scale - 4000 ÷ 400 cm- 1; resolution - 4 cm-1, sensitivity, signal-to-noise ratio - 60,000: 1; scanning speed - 20 spectra per second) [12,13].

Morphological studies of the surface of minerals were carried out using a scanning electron microscope SEM - EVO MA 10 (Zeiss, Germany). Experiments on a scanning electron microscope were carried out as follows. To carry out the sample preparation process, pieces of a test sample of the required size were applied to a round holder made of a metal alloy, on top of which an aluminum foil with a double-sided adhesive surface was glued. Finely dispersed powders of minerals were pressed at room temperature in the form of a tablet 5 mm in diameter and up to 2 mm thick. During the measurement, an accelerating voltage (EHT - Extra High Tension) of 15.00 kV was applied, the working distance (WD-working distance) was 8.5 mm. Images were acquired at various scales ranging from 250μm-500μm using SmartSEM software. The measurement was carried out in the secondary electrons detector (SE1) mode. The elemental composition at the local site was determined using an energy-dispersive elemental analyzer of the Energy-Dispersive x-ray spectrometer (EDS - Oxford Instrument) - Aztec Energy Advanced X-act SDD. When obtaining data on the elemental composition, electronic photographs with highlighted local areas, a composition table, and a graphical spectrum were presented [14,15].

Pictures of the samples were obtained at various scales, magnified 500 and 1000 times for each sample. Elemental analysis was performed at a magnification of 500 times (10 microns). ...

Results and discussion: Chemical (Table 1), X-ray phase (Fig. 1), IR spectroscopic (Fig. 2), electron microscopic (Fig. 3), analyzes of the basaltic andesite rocks of the Berkuttau area were carried out.

Table 1.

Chemical composition of the averaged process andesibazalt rock, (in terms of 100%)

No.

Sample name

calcination limit

SiO2

Al2O3

+

TiO2

Fe2O3

CaO

MgO

Na2O

K2O

SO3

Cl-

Σ

1

Sample

No. 1

8,64

55,30

17,69

8,92

6,88

Innot-iced

1,25

1,17

Innot-iced

0,15

100

 

Analysis of the data given in table. 1 showed that the chemical composition samples of basaltic andesite rock by the content of regulated silicon oxides (SiO2 = 55.30)%, aluminum (Al2O3 = 17.69)%, magnesium (MgO = Innoticed)%, sulfuric anhydrite (SO3 = Innoticed)%, alkalis (R2O = Na2O + K2O = 2.42)% meets the requirements of O'zDSt - 2950 for the chemical composition of igneous rocks for the production of Portland cement clinker. The chloride ion content in the sample is 0.15%.

 

Figure 1. Andesibazalt rock X-ray

 

The diffraction pattern of a technological sample of the basaltic andesite rock of the Berkuttau area (Fig. 1) shows the presence of diffraction maxima corresponding to minerals of quartz (d = 0.315; 0.245; 0.240; 0.228; 0.167; 0.154; 0.137 nm); chlorite (d = 0.705; 0.424; nm); albite (d = 0.636; 0.402; 0.299; 0.283; 0.245; 0.181; 0.154 nm);feldspar (d = 0.255; 0.212; nm); hematite (d = 0.365; 0.255; nm); and in an insignificant amount of calcite (d = 0.303; 0.181; 0.139; 0.137 nm).

 

Figure 2. Andesibazalt rock absorption infrared spectra

 

IR spectra were recorded on a Shimadzu FTIR-8400S FTIR spectrometer. Samples were prepared as KBr pellets.

In fig. 2 shows the IR spectrum of the initial basalt andesite used as a raw material for the production of Portland cement clinker. The pronounced band at 3570 cm-1 corresponds to crystallization H2O, the characteristic frequency of the CO32- anion is 1438 cm-1, at 977 cm-1 it is a chain-ribbon structure Si-O-Si, and the bands at 786 cm-1 to 648 cm-1 ring structures from tetrahedra [SiO4] [15].

 

Figure 3. Electron microscopic photograph of andesibazalt

 

Electron microscopic studies (Fig. 3) showed that the basaltic andesite texture and structure is characterized by the presence of a porphyry structure in the rock, the bulk of which is hyalopilitic. The bulk is represented by crystallized glass containing acicular plagioclase microliths, small grains of olivine and an ore mineral (magnetite). Numerous microliths of plagioclase laths are randomly oriented and form a dense network. Small olivine grains are distinguished in the interstices of plagioclase microliths.

Table 2.

Elemental composition of andesibazalt rock, (in terms of 100%)

Element

Weight%

Sigma Weight%

O

51.61

0.32

Na

3.44

0.11

Mg

2.80

0.10

Al

9.84

0.14

Si

24.88

0.22

K

2.91

0.11

Ca

1.66

0.10

Fe

2.85

0.21

Amount

100.00

 1,00

 

Crystalline phases of ore minerals in phenocrysts of olivines, pyroxenes, plagioclases and groundmass are represented by magnetite, with a wide range of compositions (Table 2). Voids are noted in the rock [16,17].

Conclusions. The possibility of using igneous rock as an aluminosilicate component of the raw charge in the production of Portland cement clinker-basaltic andesite rock of the Berkuttau deposit has been investigated. The chemical and mineralogical properties of the basaltic andesite rock of the deposit of the Republic of Karakalpakstan have been determined. The chemical composition of the basaltic andesite rock in terms of the content of regulated oxides (SiO2 = 55.30; Al2O3 = 17.69; MgO = weak; SO3 = weak; R2O = 2.42)%, meets the requirements of O'z DSt 2950: 2015 to the chemical the composition of aluminosilicate (clay) raw materials used in the production of Portland cement clinker. The content of the basalt andesite in the sample, which is harmful for the production of chloride ion, does not exceed 0.15%. It has been established that, in terms of its chemical composition, the basaltic andesite rock of the Republic of Karakalpakstan meets the requirements for raw materials for the production of Portland cement clinker.

 

References:

  1. Nevolin A.P., Sychkina E.N. Engineering geology, rocks (terms and definitions) / tutorial. - Perm: Publishing house of Perm. nat. issled. polytechnic University, 2019 .-510 p.
  2. Agu Jay J. Foundations of magmatic and metamorphic petrology (2nd ed.). Cambridge University Press. Cambridge, pp. 139-143. ISBN 9780521880060.
  3. Krasnoshchekova L.A. Atlas of the main types of igneous rocks / Publishing house of the Tomsk Polytechnic University.- Tomsk, 2012.-128p"[in Russian].
  4. Sharfman V.S., Kuznetsov I.E., Sobolev R.N. The structures of igneous rocks and their genesis.- SPb .: Publishing house VSEGEI, 2005.- 396 p.
  5. Popov V.S., Bogatikov O.A. Petrography and petrology of magmatic, metamorphic and metasomatic rocks: textbook- M .: Logos, 2001.- 768 p"[in Russian].
  6. Polovinkina Yu. Ir. The structures and textures of igneous rock and metamorphic rocks. Vol. 1. Part 2 - M. Nedra, 1966. - 240 p"[in Russian].
  7. Niyazova Sh.M., Kadyrova Z.R., Usmanov Kh.L. and Khomidov F.G. Chemical and mineralogical studies of magmatic rocks of Uzbekistan for obtaining heat-insulating materials. Glass and Ceramics. 2019.-V.75, No. 11/12, R.491-495.
  8. GOST 5382-91 “Cements and materials for cement production. Chemical analysis methods "[in Russian].
  9. O'z DSt 2950: 2015 Raw materials for the production of Portland cement clinker. Technical conditions"[in Russian].
  10. Gorshkov V.S., Timashev V.V., Saveliev V.G. Methods of physical and chemical analysis of binders. -M .: Higher school. -1981. -333 s"[in Russian].
  11. Pushcharovsky D.Yu. Radiography of Minerals, M. 2000.- 288s.
  12. Korovkin M.V., Ananyeva L.G. Infrared spectrometry of carbonate rocks and minerals: textbook / Tomsk Polytechnic University. - Tomsk. 2016.- 96 p"[in Russian].
  13. Kolesnikov I.V., Sapoletova N.A. Infrared spectrometry: methodological development // Moscow State University. M.V. Lomonosov, Moscow. 2011.- 88 p"[in Russian].
  14. Papko L.F., Kravchuk A.P. Physicochemical methods for the study of inorganic substances and materials. Workshop. - Minsk. 2013.-96 p"[in Russian].
  15. Gulistan Orazimbetova, Laura Ubbiniyazova Alexsey Nimchik. Stady of chemical and mineralogical properties of tufobreccia rock of Karakalpakstan as raw material for Portlandcement clinker production. /The 1st International Conference on Problems and Perspectives of Modern Science. 16 june 2022. Cite as: AIP Conference Proceedings2432, 050026-1- 050026-5; https://doi.org/10.1063/5.0089920 Published by AIP Publishing. 978-0-7354-4345-7/
  16. Alexsey Nimchik, Khikmatulla Usmanov, Gulistan Orazimbetova. The stady of the processes of metal chloride chlorination upon receipt of agloporite based on copper- contanting flotayion tallings. /The 1st International Conference on Problems and Perspectives of Modern Science. 16 June 2022. Cite as: AIP Conference Proceedings 2432, 050059-1- 050059-6; https://doi.org/10.1063/5.0089917 Published by AIP Publishing. 978-0-7354-4345-7/
  17. L.Kabulova, G.Orazimbetova, B.Abdullaeva Research corrosion of cements with a new hydraulic additive/E3S Wef of Conferences 383, 04017 (2023) TT21C 2023; http//doi.org/10.1051/e3sconf/202338304017
Информация об авторах

Candidate of Technical Sciences, Andijan Machine Building Institute, Republic of Uzbekistan, Andijan

канд. техн. наук, Андижанский машиностроительный институт, Республика Узбекистан, г. Андижан

Applicant, Karakalpak State University, Republic of Uzbekistan, Nukus

соискатель, Каракалпакский государственный университет, Республика Узбекистан, г. Нукус

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top