ESEARCH OF WATER RESISTANCE OF COAT FABRIC

ОПРЕДЕЛЕНИЕ ВОДОСТОЙКОСТИ ТКАНИ ПАЛЬТО
Цитировать:
Khamraeva S.A., Shumkarova Sh.P., Rajapova M.N. ESEARCH OF WATER RESISTANCE OF COAT FABRIC // Universum: технические науки : электрон. научн. журн. 2024. 1(118). URL: https://7universum.com/ru/tech/archive/item/16649 (дата обращения: 19.12.2024).
Прочитать статью:

 

ABSTRACT

In the article, the water resistance (water permeability) property of suit fabric with 100% cotton yarn, 50% polyester and 50% cotton fibers was studied. Average value of research results, mean square deviation, coefficient of variation, The quality of the results was analyzed according to the A.N. Kolmogorov criterion.

The effect of thermal factors leads to aging and changes in the structure of the adhesive material - polymer sewing thread, glue and adhesive bonding, polymer base material and solder bonding. Vse eto takje privodit k snijeniyu prochnosti soedineniy detaley izdeliya.

 To compare its results, the results of the water resistance of the 1.5-layer fabric were checked using the Shapiro Wilkie criterion, and n = 10, W 0.05 = 0.842. W = 0.964 > W 0.05.= 0.842 it can be concluded that the obtained results correspond to the normal distribution law. able 1ing order, V, mm water.

АННОТАЦИЯ

В статье было изучено свойство водостойкости (водопроницаемости) ткани для пальто, состоящей из 100% хлопчатобумажной пряжи, 50% полиэстера и 50% хлопчатобумажных волокон. Среднее значение результатов исследования, среднеквадратичное отклонение, коэффициент вариации, качество результатов анализировались по критерию А.Н. Колмогорова.

Воздействие термических факторов приводит к старению и изменению структуры клеевого материала - полимерной швейной нити, клея и адгезионного соединения, полимерной основы и паяного соединения. Все это так же приводит к уменьшению прочности соединений деталей изделия.

Чтобы сравнить его результаты, результаты водостойкости 1,5-слойной ткани были проверены с использованием критерия Шапиро Уилки, и n = 10, W 0,05 = 0,842. W = 0,964 > W 0,05.= 0,842 можно сделать вывод, что полученные результаты соответствуют нормальному закону распределения.

 

Keywords: cotton, polyester, coat fabric, water resistance, criterion, standard deviation, coefficient of variation, criterion, theoretical probabilities.

Ключевые слова: хлопок, полиэстер, ткани для пальто, водонепроницаемость, критерий, стандартное отклонение, коэффициент вариации, критерий, теоретические вероятности.

 

This is the first most important PC of raincoat fabrics; its weight is the greatest and amounts to B = 2.5. Tests were carried out in accordance with GOST 3816 “Textile fabrics. Methods for determining hygroscopic and water-repellent properties" using a penetrometer device [1, 2].

Water resistance is determined by the height of the water column in mm, corresponding to the moment the first three drops of water appear in different places on the inner surface of the sample. To carry out the test, at least five round samples with a diameter of at least 160 mm or a square sample with a size of 160x160 mm are cut from a spot sample so that they do not contain the same groups of warp threads or loop stitches and weft threads or loop rows, as well as local vices.

To assess the compliance of the distribution of test results with the theoretical law, the standard number of tests is not enough, so an increased number of measurements was carried out, amounting to ten. Let us consider the methodology for analyzing and selecting a statistical model of the water resistance of the fabric under study[3, 4].

The following results for determining water resistance were obtained: 865; 856; 859;849; 864; 865;859; 857; 869;861 mm water column. Based on these primary data, the following were found: average value B ̅ = 860.4 mm water column. Standard deviation found by the formula:

Where Хi are the results of determining water resistance;

-  -sample average

 = V((865 - 860,4 + 856 - 860,4 + 859 - 860,4 + 849 - 860,4 + 864 - 860,4 + 865 - 860,4+ 859-860,4 + 857-860,4 + 869-860,4 +86 1 - 860,4)2/10) = 5,72 ммwat.kup., coefficient of variation found by the formula:

Since the normal distribution is most widespread, it is advisable to start checking the consistency of the results of determining the water resistance of the tissues under study with it. In addition, the water resistance of fabrics depends on a large number of different factors, which corresponds to the probabilistic-statistical model of the normal law. To construct a leveling line, it is enough to calculate two points using the formula:

where Xi is the value of the random variable;

-average value;

 - standard deviation.

In this example, these are the extreme points of the sample. For the data under consideration we have.

A straight line is drawn along the found points. If the experimental points are located near the straight line, then the distribution under study corresponds to the selected theoretical one[5, 6].

Table 1 shows an example of the necessary calculations for plotting the water resistance values of raincoat fabric 1 on normal law probability paper.

Table 1.

Example of the necessary calculations for plotting the water resistance values of raincoat fabric 1 on normal law probability paper

Serial number of the result of the ranked series,

Test results, recorded in ascending order, V, mm water. St

Cumulative frequency of the empirical distribution, W

Theoretical probabilities of the studied quantity, U’p

1

849

0,05

-1,65

2

856

0,15

-1,04

3

857

0,25

-0,67

4

859

0,40

-0,25

5

859

0,40

-0,25

6

861

0,55

0,13

7

864

0,65

0,39

8

864

0,80

0,84

9

865

0,80

0,84

10

869

0,95

1,65

 

Knowing the Xi results and the corresponding Up', the corresponding results are plotted on the probability paper and a straight line is drawn through the obtained points. If the experimental points are grouped quite well around a straight line in the middle zone of the graph, i.e. If the points lie on a straight line or are at a very small distance from it, then we can assume that the experimental distribution does not contradict the theoretical one.

In Figure 1 shows the probability paper for the normal law and the location on it of the distribution points of the water resistance test results of raincoat fabric 1, as well as the leveling straight line. It can be seen from the graph that the points are well grouped around a straight line, so it is possible to use the normal distribution law to interpret the results of testing the water resistance of fabrics[7]. Let us check the compliance of the results obtained with the water resistance of raincoat fabric 1 according to A.N. Kolmogorov, which is based on the maximum value of the discrepancy Dn between the accumulated frequencies of the empirical and theoretical distributions:

where n- is the number of tests.

For this purpose in table. 2 we write down the test results in ascending order. Determine the empirical frequencies Wi, as well as the accumulated frequencies Wi’. Values of accumulated theoretical frequencies Wi’ for normaldistributionsare determined by the value.

Next, the absolute values of the differences (Wi’- Wi) are calculated for each line and the maximum of them is designated Dn

Table 2.

The test results

V, mmwater. St.

Wi

t

Wi

Wi- Wi

1

849

0,05

-1,99

0,02

0,03

2

856

0,15

-0,77

0,21

0,06

3

857

0,25

-0,59

0,27

0,02

4

859

0,40

-0,24

0,42

0,02

5

859

0,40

-0,24

0,42

0,02

6

861

0,55

0,10

0,54

0,01

7

864

0,65

0,63

0,73

0,08

8

864

0,80

0,80

0,79

0,01

9

865

0,80

0,80

0,79

0,01

10

869

0,95

1,50

0,93

0,02

 

Probability of a 3rd drop of water appearing

Water resistance mm waterstan

Figure 1. Results of determining water resistance for raincoat fabric based on the probability of the normal law

 

For the results of determining the water resistance of raincoat fabric, Dn = 0.08, therefore, according to formula (3.9) = 0.253. According to the table of probability values, P( ) = 0.999 > 0.05 = q. From the calculations it follows that the hypothesis that the test results correspond to the normal distribution law is not rejected [8].

As a rule, the Kolmogorov test is used for continuous distributions with a sufficiently large sample size, so for this calculation example it is more preferable to use the Shapiro Wilkie test

To calculate the Shapiro-Wilkie criterion (Table 3.4), the results of primary measurements are ranked in ascending order and the values of the ordinal index i are written in column 1, and the corresponding ranked values in column 2. In column 3, write the values of X2i, and in column 4, the values of the ordinal index j = 1,2, ..., e, starting from the last line in the reverse order compared to writing the values of index i. In this case, e = 0.5 • (n- 1), if n is an odd number. In our case, with n = 5 • e = 0.5 • (5-1) = 2. In column 5, the values of coefficient A corresponding to index j, which are determined for a given number of measurements (n = 10).The calculated differences Xn-j+1-Xj are inserted into column 6. In column 7, enter the values of the products of values in columns 5 and 6. The data in columns 2, 3 and 7 are summed up and written in the last line (Table 3).

Cording to the data indicated in table. 3.3, calculate the values ( 2 and b2 using the formulas:

2= ( 8 4 9 2 + 856 2+ 8572 + 859 2 + 8592 + 861 2 + 8642 + 8652 + 8652 ++869 2 ) -(849 + 856 + 857 + 859 + 859 + 861 + 864 + 865 + 865 + 8б9)2/10 = 294,40;

=0,0399 (869-849) +0,1224 (865-856) +0,214 (865-857) +0,3291(864-859)+ +0,5739(861-859) = 16,84;

The Shapiro-Wilkie criterion is calculated using the formula:

The obtained W values are compared with the table value of W0.05. If W <W0.05, then the probability that the sample under study from the general population has a normal distribution does not exceed 0.05, therefore, the hypothesis isrejected. In table 3 shows an example of calculating the criterion W for a primary population that has a normal distribution and does not exceed 0.05, therefore, the hypothesis is rejected[9, 10].

Table 3 shows an example of calculating the criterion for the primary results of determining the water resistance of raincoat fabric.

Table 3.

Example of calculating the criterion for the primary results of determining the water resistance of raincoat fabric

Хi

Хi2

j

An-j+1

Xn-j+1-Xj

k5xk6

1

849

720801

 

 

 

 

2

856

732736

 

 

 

 

3

857

734449

 

 

 

 

4

859

737881

 

 

 

 

5

859

737881

 

 

 

 

6

861

741321

5

0,0399

2

0,08

7

864

746496

4

0,1224

5

0,61

8

864

748225

3

0,2141

8

1,71

9

865

748225

2

0,3291

9

2,96

10

869

755161

1

0,5739

20

11,48

Сумма

8604

7403176

 

 

 

16,84

 

As a result of the calculations, the following values were obtained: =249.40; b 2 =283.74; W=0.964.

With the number of tests n = 10, W 0.05 = 0.842. Since W = 0.964 > W 0.05.= 0.842, we can conclude that the results correspond to the normal distribution law.

 

References:

  1. Хамраева С.А., Шумкарова Ш.П.Оценка качественных показателей плащевых тканей. Международная конференция, Baku, BTU, 2023. -стр.41-43.
  2. N Yusupova, S Khamrayeva, D Nazarova. Designing Suit Fabric on the Shortening of the Threfds // xv International Scientific Conference "INTERAGROMAS 2022H" 2, 2044-2049, 2023
  3. Sanovar Khamrayeva, Dilbar Mirzanazarova, DilraboNazarova.Development of a New Blended Fabric on the RIFA-RFJW-10 Machine and Performance Analysis  // E3S Web of Conferences, 2023.,  376, EDP Sciences
  4. Dilrabo Tolibjanovna Nazarova, SanovarAtoevnaXamraeva, Mirzanazarova Dilbar Jamalovna Vliyanie usadki na vozduxopronitsaemost tkaney// International Journal of Advanced Science and Technology, IBAST | Volume 3, Issue 3, March. R. 550-553
  5. Хамраева С.А. Равновесия нити на поверхности ткани //Текстильная промышленность. - М., 2007.-№6. -С.55-54.
  6. Хамраева С.А. Аналитический расчёт движения прокладчика утка //Текстильная промышленность. -М., 2007.-№6. -С.50-52.
  7. Шумкарова С. и др. Влияние вторичных материальных ресурсов на физико-механические свойства напольных тканей //Материалы конференции АИП. – Издательство АИП, 2022. – Т. 2432. – №. 1.
  8. Shumkarova S. et al. Correction coefficiency of physical and mechanical properties of fabrics and calculation of irrigation //AIP Conference Proceedings. – AIP Publishing LLC, 2022. – Т. 2432. – №. 1. – С. 040025.
  9. S. Кhamraeva, D.Giyasova2 ,D.Kazakova. Study of the quality of yarns obtained from recycled composite fibers// Journal of Hunan University(NaturalSciences)Vol. 49. No. 12 December 2022, рр.1637-1642.
  10. Yusupova N.B. ,Nazarova D.T., Khamrayeva S.A., Valiyeva Z.F. Evaluation of the Structure the Costume Fabric over its Surface // International Journal of Advanced Research in Science, Engineering and Technology. ISSN: 2350-0328 India, 2018. vol. 6738-6742.
  11. Marguba R. et al. Change of physico-mechanical properties of t-shirt finishing with different fiber content //Universum: технические науки. – 2021. – №. 11-6 (92). – С. 59-64.
  12. Shumkarova S. P. et al. Effect of Drying Temperature on Cotton Cleaning Efficiency and Change Class Change.
Информация об авторах

Professor of Tashkent Textile and Light Industry Institute, Republic of Uzbekistan, Tashkent

профессор Ташкентского института текстильной и легкой промышленности, Республика Узбекистан, г. Ташкент

Associate Professor of the Jizzakh Polytechnic Institute, Republic of Uzbekistan, Jizzakh

доцент, Джизакского политехнического института, Республика Узбекистан, г. Джизак

Candidate of Technical Sciences, Associate Professor of the Jizzakh Polytechnic Institute, Republic of Uzbekistan, Jizzakh

канд. техн. наук, доцент Джизакского политехнического института, Республика Узбекистан, г. Джизак

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top