Professor of the Department of Chemistry of the Bukhara Institute of Engineering-Technology, Republic of Uzbekistan, Bukhara
STUDYING THE FRACTIONAL COMPOSITION OF SPENT SECONDARY HEXANE PRODUCED BY JV LLC “UZ-KOR GAS CHEMICAL”
ABSTRACT
The results of a study to determine the fractional composition of waste hexane, a secondary product of the polymerization of hydrocarbons, are presented. This article presents the results of a study of the fractional composition and its properties of waste hexane obtained as a result of the polymerization reaction of hydrocarbons. Waste hexane has been shown to be colorless with an unpleasant odor. Based on the results of atmospheric distillation of waste hexane, paraffin fractions can be obtained. When heated, waste hexane will melt at 55℃ and within 60℃ the initial fraction is released from it. According to the results of research work carried out to study the fractional composition of waste hexane, there are more paraffins than other hydrocarbons. The qualitative and quantitative composition of the isolated fractions is focused on the isolation of decane, undecane and dodecane.
АННОТАЦИЯ
Приведены результаты исследования по определению фракционного состава отработанного гексана – вторичного продукта процесса полимеризация углеводородов. В данной статье представлены результаты исследования фракционного состава и его свойств отработанный гексан, полученного в результате реакции полимеризация углеводородов. Показано, что отработанного гексана бесцветного с неприятным запахом. По результатам атмосферной перегонки отработанного гексана можно получить фракции парафинов. При нагревании отработанный гексан расплавится при 55℃ и в пределах 60℃ из него выделяется начальная фракция. По результатам проведенных научно-исследовательских работ по изучению фракционного состава отработанного гексана парафинов больше, чем других углеводородов. Качественный и количественный состав выделенных фракций сориентированы на выделение декан, ундекан и додекан.
Keywords: waste hexane, fractional composition, atmospheric distillation, paraffin, polymerization, process.
Ключевые слова: отработанный гексан, фракционный состав, атмосферной перегонка, парафин, полимеризация, процесс.
INTRODUCTION
One of the top priorities for the continued growth of oil and gas processing companies is the deep processing of natural gas and the sensible disposal of technological waste into petroleum products with enhanced environmental performance[1-3].
The oil and gas industry occupies an important place in the economy of our country. This industry is not only a source of energy, but also the main raw material base for the production of polymers and organic chemicals necessary for many industries. One of these polymers is produced by the LLC JV “Uz-Kor Gas Chemical”[4-6].
The joint venture “Uz-Kor Gas Chemical” LLC is one of the largest producers of polymer products in Central Asia based on the processing of 4.5 billion m3 of natural gas and 162 thousand tons of gas condensate in the Ustyurt region. The annual production capacity of the plant is 387 thousand tons of polyethylene and 83 thousand tons of polypropylene. As well as LFH (liquefied hydrocarbon), which will be used as a raw material in the production of ethylene and propylene. This produces more than 102 thousand tons of pyrolysis distillate, 8.3 thousand tons of pyrolysis oil and waste hexane. Pyrolysis oil, pyrolysis distillate and waste hexane are not processed in the republic[6-9].
In the polymerization section, the polymerization reaction of ethylene, propylene, butene-1, and hydrogen takes place in a hexane environment. Hexane and polyethylene formed in the polymerization section are separated in the separation section, part of the separated hexane is fed back into the polymerization section, and the rest is sent to the regeneration section and removed from the process along with the remaining hexane and polymer residues. Today, an urgent problem is the formation of waste hexane in the main polyethylene workshop of the enterprise and its prevention. The components and properties of spent hexane, their qualitative, quantitative and fractional composition are being studied by scientists from all over the world and our republic[10; 11].
MATERIALS AND METHODS
The object of study was waste hexane, a sample from the Ustyurt Mining and Chemical Combine. For the research, modern methods of physical and chemical analysis were used, as well as methods for analyzing oil and petroleum products that meet state (SST) and world (ASTM) standards. Spent hexane was distilled at atmospheric pressure in the oil product fractionation unit ARNA-9 (Fig. 1) in the laboratory of “Neftgaztadqiqot” JSC to 255 ℃ according to SST-2177-99 and the constituent components of the samples were separated separately.
Figure 1. ARNK-9 Apparatus for distillation of petroleum products
RESULTS AND DISCUSSION
Analyzes of the physicochemical parameters of the spent hexane sample, which is colorless with an unpleasant odor, showed the following values. Table 1 shows the results of a series of experiments to determine the fractional composition of waste hexane (wt.%) by distillation under atmospheric pressure at distillation temperatures from 55 to 255 °C.
Table 1.
Main results of experiments on the distillation of waste hexane
№ |
The name of indicators |
Values |
1 |
Density at 20 °C, kg/m3 |
714 |
2 |
Fractional composition: |
|
|
Initial boiling point, °C |
55 |
|
10 % |
87 |
|
20 % |
92 |
|
30 % |
100 |
|
40 % |
109 |
|
50 % |
121 |
|
60 % |
132 |
|
70 % |
144 |
|
80 % |
162 |
|
90 % |
195 |
|
Boiling point, °C |
255 |
|
Exit, % |
98 |
|
Residue in flask, % |
1.0 |
|
Losses, % |
1.0 |
Waste hexane melts at 55 ℃ when heated, and the initial fraction is released from it at 60 ℃. The fractional composition of waste hexane has been studied, and the results show that paraffins make up a larger portion of the mixture than other hydrocarbons. The isolation of decane, undecane, and dodecane is the main focus of the qualitative and quantitative composition of the isolated fractions. Having studied waste hexane, boiling from 170 to 220 °C, we obtained the physicochemical values given in Table 2.
Table 2.
Comparative obtained physico-chemical values
№ |
Fractions |
|
Density at 20 °C, kg/m3 |
Refractive index |
1. |
170 - 180 ℃ |
|
0.730 |
1.4118 |
Decane |
|
0.730 |
1.4119 |
|
2. |
190 – 200 ℃ |
|
0.739 |
1.4156 |
Undecane |
|
0.740 |
1.4151 |
|
3. |
210 – 220 ℃ |
|
0.749 |
1.4211 |
Dodecane |
|
0.749 |
1.4216 |
As you can see, by atmospheric distillation of waste hexane, it is possible to obtain fractions of decane (170 - 180 ℃), Undecane (190 - 200 ℃) and Dodecane (210 - 220 ℃).
Conclusion
Selective work was carried out to determine the chemical composition of waste hexane generated at the LLC JV “Uz-Kor Gas Chemical”, to resolve issues of their rational use, and to search for methods of chemical processing. The analysis results showed that, in comparison with literature data, hexane waste can be used as a raw material with a high hydrocarbon content for further chemical processing. The issue of preparing raw materials for the production of hydrocarbon raw materials is important when creating formulations of robust compounds, taking into account data from economic and environmental analysis.
References:
- Bobir, O., Vokhid, A., Gulnoz, G., & Sherzod, R. (2022). SYNTHESIS AND PROPERTIES OF NITROGEN-RETAINING CORROSION INHIBITORS. Universum: химия и биология, (4-2 (94)), 43-46.
- Raxmatov, S. (2023). Synthesis of corrosion inhibitor based on local raw materials. Scientific Collection «InterConf», (142), 431-434.
- Официальный сайт СП ООО «Uz-Kor Gas Chemical» / [Электронный ресурс]. – Режим доступа: http://www.uzkor.com/index.php/ru/deyatelnost.
- Кодиров, О. Ш., Мирзакулов, Х. Ч., Бердиев, Х. У., & Шарипова, В. В. (2018). Исследование химического состава пироконденсата пиролизного производства. Universum: технические науки, (9 (54)), 59-64.
- Хамроев, Ф. Б., Асадова, Д. Ф., & Хайитов, Р. Р. (2022). Исследование фракционного состава пиролизного дистиллята. Science and Education, 3(4), 384-389.
- Хайдаров, Б. А. У., Муродова, Ю. М. К., Ботиров, С. Х. У., & Хайитов, Р. Р. (2020). Хроматографический и ИК-спектральный анализ химического состава пиролизного дистиллята. Universum: технические науки, (7-3 (76)), 39-42.
- Olimov, B. B., & Rakhmatov, S. (2022). SYNTHESIS AND USE OF CORROSION INHIBITORS ON THE BASIS OF DIATOMIC PHENOLS IN THE OIL AND GAS INDUSTRY. In Kimyo va tibbiyot: nazariyadan amaliyotgacha (pp. 141-143).
- 8.Джураева, Л. Р., & Кодиров, О. Ш. (2022). ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО СОСТАВА ПИРОЛИЗНОГО МАСЛА ВТОРИЧНОГО ПРОДУКТА ПРОИЗВОДСТВА СП ООО" UZ-KOR GAS CHEMICAL". Universum: технические науки, (4-8 (97)), 44-48.
- Гайбуллаев, С. А., & Турсунов, Б. Ж. (2020). Пироконденсат-важнейшее сырье химического синтеза. Universum: технические науки, (6-2 (75)), 84-86.
- Zuhriddin, R., & Niginabonu, J. (2022). Production of polyethylene terephthalate. Universum: технические науки, (5-11 (98)), 58-62.
- Rayimov, Z. X. O. G. L., & Hayitov, S. T. O. G. L. (2023). Ikkilamchi polietilentereftalatning mexanik qayta ishlash retsikli. Science and Education, 4(4), 490-494.