STUDY OF POLYTHERMAL SOLUBILITY OF NH2C2H4OH – C6H4(OH)COOH – H2O SYSTEM

ИССЛЕДОВАНИЕ ПОЛИТЕРМИЧЕСКОЙ РАСТВОРИМОСТИ СИСТЕМЫ NH2C2H4OH – C6H4(OH)COOH – H2O
Цитировать:
Khushvaktov M., Togasharov A.S. STUDY OF POLYTHERMAL SOLUBILITY OF NH2C2H4OH – C6H4(OH)COOH – H2O SYSTEM // Universum: технические науки : электрон. научн. журн. 2023. 10(115). URL: https://7universum.com/ru/tech/archive/item/16159 (дата обращения: 18.12.2024).
Прочитать статью:

 

ABSTRACT

In this work, the polythermal solubility of a three-component system containing NH2C2H4OH – C6H4(OH)COOH - H2O is studied and its diagram is constructed based on binary systems and internal sections by the visual polythermal method in the temperature range from -49 °C to 5.0 °C.

In the solubility diagram, the phase-separating secondary and tertiary points were identified and the projection is drawn.

In the diagram, the crystallization areas of ice, salicylic acid, monoethanolamine dihydrate, monoethanolamine monohydrate, monoethanolamine, and a new chemical compound monoethanolammonium salicylate formed in the system were delimitted.

The new compound formed in the system was seperated. The compound was analyzed using chemical, and NMR spectroscopy (spectrum 1 H and 13C), and the presence of C6H4(OH)COOH∙NH2C2H4OH was confirmed.

АННОТАЦИЯ

В данной работе на основе бинарных систем и внутренних разрезов изучена политермическая растворимость трехкомпонентной системы NH2C2H4OH – C6H4(OH)COOH – H2O визуальным политермическим методом в интервале температур от -49 °С до 5,0 °С на основе бинарных систем и внутренних разрезов визуальным политермическим методом, и была построена ее диаграмма. На диаграмме растворимости определены двойная и тройная точки разделения фаз, сформированы таблица и проекция. 

На схеме разграничены области кристаллизации льда, салициловой кислоты, дигидрата моноэтаноламина, моногидрата моноэтаноламина, моноэтаноламинов и нового химического соединения, образующегося в системе моноэтаноламмонийсалицилата. Новое соединение, образовавшееся в системе, было выделено и проанализировано химическим, физико-химическим методом на ЯМР-спектроскопии (спектр 1Н и 13С) и подтверждено наличие C6H4(OH)COOH∙NH2C2H4OH.

 

Keywords: solubility diagram, crystallization temperature, physiologically active substance, salicylic acid, monoethanolamine, monoethanolammonium salicylate, NMR spectroscopy.

Ключевые слова: диаграмма растворимости, температура кристаллизации, физиологически активное вещество, салициловая кислота, моноэтаноламин, салицилат моноэтаноламмония, ЯМР-спектроскопия.

 

Today, the demand for high yields from agricultural crops is increasing day by day. Accordingly, the demand for physiologically active substances is increasing. Physiologically active substances ensure the transfer of nutrients from the leaves and branches of plants to the harvest. Such events make it possible to increase productivity and widely use mechanization in harvesting agricultural products. [1].

Many studies involving salicylic acid have been of great interest for several years and in almost all fields. Also, many physiologically active compounds have been obtained on the basis of salicylic acid and their biological and pharmacological activity has been studied. [2]. In particular, salicylic acid itself, as an internal regulatory hormone of the plant, carries out various physiological processes in the plant, the mechanism of its protection from biotic and abiotic influences has been studied in a number of literature [3]. The synthesis of complex salts based on salicylic acid, monoethanolamine and d-elements, their physico-chemical analysis, laboratory and field experiments on the example of cotton were studied. Experimental tests of these compounds have shown that they really exhibit properties that increase plant growth and productivity. It can also be used as a promising stimulator of plant development in agriculture [4-7].

At the same time, monoethanolamine, which is found in radishes, cumin, grapes, and a number of other similar foods, has significant plant growth and antimicrobial activity [8-9]. Also, monoethanolamine and its derivatives help plants survive and even enhance growth under abiotic and biotic stresses such as salinity [10-11]. Monoethanolamine – takes an active part in redox processes in plants, enhances the synthesis of organic phosphorus compounds, increases protein metabolism and the activity of enzymatic processes [12-13].

M. Crisan and his colleagues synthesized a salt based on benzoic acid and monoethanolamine in order to increase the physiological activity of monoethanolamine and conducted biological activity tests. These studies confirmed that the plant growth promoting effect of salt was dramatically improved [14-16]. Also experiments on plant growth and antimicrobial properties of salt between 4-nitrobenzoic acid and monoethanolamine show that both types of acid components have enhanced bioactivity properties despite losing their fungicidal effect [17].

Ethanolamines and their compounds with acetic [18], citric [19], nitric [20] and orthophosphate [21-22] acids have physiological activity. The presence of the ethylene (-CH2-CH2-) group in these compounds leads to an increase in the amount of ethylene in the leaf band of the plant, the shedding of leaves and the acceleration of the defoliation process [23].

From the analysis of the literature, it can be seen that salicylic acid and monoethanolamine play an important role in the growth and development of plants. However, the interaction of these two components in aqueous solution has not been studied. Therefore, the solubility of the ternary system consisting of salicylic acid, monoethanolamine and water was studied by visual polythermal method [24].

Binary systems and four internal sections are used to construct a diagram of the polythermal solubility of system NH2C2H4OH – C6H4(OH)COOH - H2O. The studies were carried out by transferring internal incisions from the NH2C2H4OH- H2O side to the C6H4(OH)COOH site. A polythermal solubility diagram of the NH2C2H4OH – C6H4(OH)COOH - H2O system was constructed over the temperature range of −49.0 °C to 5.0 °C using binary systems and internal cuts (Fig.1.). In this polythermal solubility diagram, isotherms were studied at every 10°C temperature interval.

 

Figure 1. A Polythermal solubility diagram of the NH2C2H4OH – C6H4(OH)COOH - H2O system

 

Table 1.

Binary and ternary points of the NH2C2H4OH – C6H4(OH)COOH - H2O system

Composition of the liquid phase, wt %

Cryst, T°С

 

Solid phase

 

NH2C2H4OH

C6H4(OH)COOH

H2O

-

0,02

99,98

0

Ice + C6H4(OH)COOH

13,6

32,0

54,4

-10,8

-//-

22,4

43,6

34,0

-28,8

-//-

26,0

45,6

28,4

-40,2

Ice + C6H4(OH)COOH + C6H4(OH)COOH∙NH2C2H4OH

32,4

46,0

21,6

-35,0

C6H4(OH)COOH + C6H4(OH)COOH∙NH2C2H4OH

43,4

45,6

11,0

-20,0

-//-

56,0

44,0

0

1,0

-//-

50,4

4,0

45,6

-49,0

Ice + NH2C2H4OH∙2Н2О + C6H4(OH)COOH∙NH2C2H4OH

52,0

-

48,0

-48,5

Ice + NH2C2H4OH∙2Н2О

57,4

4,4

38,2

-47,8

NH2C2H4OH∙2Н2О + C6H4(OH)COOH∙NH2C2H4OH

62,0

5,2

32,8

-47,5

NH2C2H4OH∙2Н2О + C6H4(OH)COOH∙NH2C2H4OH + NH2C2H4OH∙Н2О

66,4

-

33,6

-46,1

NH2C2H4OH∙2Н2О + NH2C2H4OH∙Н2О

72,4

7,2

20,4

-28,0

NH2C2H4OH∙Н2О + C6H4(OH)COOH∙NH2C2H4OH + NH2C2H4OH

78,4

-

21,6

-25,2

NH2C2H4OH∙Н2О + NH2C2H4OH

73,8

7,6

18,6

-26,0

C6H4(OH)COOH∙NH2C2H4OH + NH2C2H4OH

88,0

12,0

-

5,0

C6H4(OH)COOH∙NH2C2H4OH + NH2C2H4OH

 

Crystallization areas of ice, salicylic acid, monoethanolamine dihydrate, monoethanolamine monohydrate, monoethanolamine and monoethanolammonium salicylate were separated in the phase diagram of this studied system. These crystallization areas are connected at four triple points (Fig. 2).

 

 

Figure 2. A Polythermal projections of the NH2C2H4OH – C6H4(OH)COOH - H2O system

 

The initial triple point crystallizes at -40.2°C temperature and corresponding to 26.0% monoethanolamine, 45.6% salicylic acid, 28.4% water. The composition of the second triple point corresponds to 50.4% monoethanolamine, 4.0% salicylic acid, 45.6% water, and the crystallization temperature corresponds to -49.0°C. The next triple point composition is 62.0% monoethanolamine, 5.2% salicylic acid, 32.8% water, which exhibits a crystallization temperature of -47.5°C, and the last triple point is 72.4% monoethanolamine, 7.2% salicylic acid, corresponds to 20.4% water and crystallizes at -28.0 °C (Table 1).  

It can be seen from the constructed diagram that ice is bounded by salicylic acid in the temperature range from -0 °C to -40.2 °C, and by monoethanolamine dihydrate in the temperature range from -40.2 °C to -48.5 °C. Ice crystallizes with salicylic acid and monoethanolammonium salicylate at a temperature of -40.2 °С, with monoethanolamine dihydrate and monoethanolammonium salicylate at a temperature of -49.0 °С. In the diagram, the phase boundary of salicylic acid and monoethanolammonium salicylate separated in the temperature range from -40.2 °C to 1.0 °C and the phase boundary of monoethanolamine dihydrate and monoethanolammonium salicylate is separated in the temperature range from -49.0 °C to -47.5 °C. The phases of monoethanolamine dihydrate and monoethanolamine monohydrate are limited in the temperature range from -47.5 °C to -46.1 °C. Monoethanolamine monohydrate and monoethanolammonium salicylate has a phase boundary between -47.5 °C and -28.0 °C, monoethanolamine monohydrate and monoethanolamine phase separated in the temperature range from -28.0 °C to -25.2 °C. Monoethanolamine is limited to monoethanolammonium salicylate at temperatures from -28.0 ° C to 5.0 ° C.

The compound isolated from the new phase formed in the polythermal solubility diagram was analyzed using chemical and physicochemical (NMR. 1H and 13C.) methods of analysis (Fig.3 and Fig.4.).

Chemical analysis gave the following results:

found mass. % С – 54.23; Н – 6.52; N – 7.03;

Calculated for C6H4(OH)COOH∙NH2C2H4OH ,

wt.% C – 54.27; H – 6.53; H - 7.04

It can be seen from the 1H NMR spectrum of the sample that salicylic acid and monoethanolamine satisfy a 1:1 stoichiometric ratio and together form a salt-like compound.

 

Figure 3. 1H NMR spectrum of matter

 

Figure 4. 13C NMR spectrum of matter

 

Thus, new information was obtained about the solubility of components in the NH2C2H4OH – C6H4(OH)COOH - H2O system.

The system belongs to the complex eutonic type, the formation of a new phase was observed in it, the extracted compound (monoethanolammonium salicylate) was analyzed using NMR spectroscopy (1H and 13C spectrum).

The results obtained are serve as a scientific basis for the development of technology for the production of physiologically active substances based on salicylic acid and monoethanolamine.

 

References:

  1. Малиновский, В.И. Физиология растений -Владивосток: -2004 г. - 110с.
  2. Ricardo, F.P., Moilton, R.F. Solubility of salicylic acid in water + salt (NaCl, KCl, NaBr, Na2SO4 and K2SO4) at 293.5–313.3 K // Federal University of Uberlândia, School of Chemical Engineering. - 2012.- 330. C.- 48– 51
  3. Heidaria, M., Moradia, Mehdi, M.A., Reza, M. Effects of foliar application of salicylic acid and calcium chloride on yield, yeild components and some physiological parameters in cotton // Ameriana Sustainability in Food and Agriculture       (SFNA)      3(1)   (2022)         28-32 http://doi.org/10.26480/sfna.01.2022.28.32
  4. Ruzmetov, A.Kh., Ibragimov, A.B., Yakubov, Y.Yu., Akitsu, T., Shimonishi, D., Ibragimov, A.B., Changkun, X., Showkot Hossain, A.M. Synthesis, crystal structure and Hirshfeld surface analysis of binuclear Cu (II) complexes from o/p-hydroxybenzoic acid with ethanol and water solution of monoethanolamine // 242. (2023). C.- 116491
  5. Cheng, H.M., Gao, X.W., Zhang, K., Wang, X.R ., Zhou, W., Li, S.J., Cao. X.L., Yan, D. P. A novel antimicrobial composite: ZnAl-hydrotalcite with p-hydroxybenzoic acid intercalation and its possible application as a food packaging material // New J. Chem. 43 (2019) 19408, https://doi.org/10.1039/c9nj03943k.
  6. Ruzmetov, A.Kh., Ibragimov, A. B., Myachina, O. V., Rimma N. K., Mamasalieva, L. E., Ashurov, J. M.,. Ibragimov, B. T. Synthesis, crystal structure, Hirshfeld surface analysis and bioactivity of the Cu mixed-ligand complex with 4-hydroxybenzoic acid and monoehtanolamine, Chem. Data Collect. 38 (2022), https://doi.org/10.1016/j.cdc.2022.100845.
  7. Ibragimov, A.B., Ashurov, Z.M., Ibragimov, B.T. Two supramolecular complexes based on 4-hydroxybenzoic acid and triethanolamine: Synthesis and structure, Russ. J. Inorg. Chem. 62 (2017) 439–445, https://doi.org/10.1134/  S0036023617040064;
  8. Bergmann, H., Eckert, H. Effect of monoethanolamine on growth and biomass formation of rye and barley, Plant Growth Regul. 9 (1990) 1–8, https://doi.org/ 10.1007/BF00025273 
  9. Zardini, H.Z., Davarpanah, M., Shanbedi, M., Amiri, A., Maghrebi, M., Ebrahimi, L., Microbial toxicity of ethanolamines - multiwalled carbon nanotubes, J. Biomed. Mater. Res. Part A 102 (6) (2014) 1774–1781, https://doi.org/10.1002/jbm.a.34846.
  10. Moussa, H.R., El-Sayed, M.S., Ghramh, H.A. Ethanolamine affects physiological responses of salt-treated jute plants, Int. J. Veg. Sci. (2019) 1–9, https://doi.org/ 10.1080/19315260.2019.1566187. 
  11. Han, L., Gao, J.R.,. Li, Z.M., Zhang, Y.,. Guo, W.M. Synthesis of new plant growth regulator: N-(Fatty acid) O-aryloxyacetyl ethanolamine, Bioorg. Med. Chem. Lett. 17 (11) (2007) 3231–3234, https://doi.org/10.1016/j. bmcl.2007.03.013.
  12. Цыпленкова, А.Ю., Кольцова, О.В., Лобанов, Н.Н., Ершов, М.А., Скворцов, В.Г. Физико-химические системы из дикарбоновых кислот, аминоспирта и воды при 25 0С. // Бутлеровские сообщения. 2013. Т. 36. № 11. С.146-155.
  13. Исаев, Ф.Г. Действие этаноламинов на урожайность, качество и полегаемость растений // 12-й Менделеевский съезд по общ. и приклад. химии. Реф. Докл. и сообщ. М.: 1981. № 6. С. 157-158.
  14. Xcalibur. Oxford diffraction Ltd. CrysAlisPro. Version.1.171.33.44, 2009.
  15. Sheldrick, G.M. SHELXT – integrated space-group and crystal-structure determination, Acta Cryst. 71 (2015) 3–8. A; (b) G.M.
  16. Sheldrick. Crystal structure refinement with SHELXL, Acta Cryst. 71 (2015) 3–8. C.
  17. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A. Mercury programme, J. Appl. Crystallogr. 41 (2008) 466–470.
  18. Toghasharov, A.S., Tuchtaev, S. Study of the Solubility of Components in the System Mg(ClO3)2-2NH2C2H4OH∙H3C6H5O7-H2O // Jurnal of Inorganic Chemistry. – Moscow, 2013 Vol. 58. -№5. pp. 581-584. 
  19. Сиддиков, A.A., Тогашаров, А.С., Шукуров, Ж.С., Тухтаев. С. Изучение растворимости и реологических свойств системы NaClO3CO(NH2)2-NH2C2H4OHHNO3-H2O. Ўзбекский химический журнал. Тошкент, 2018. №3 С.3-9. (02.00.00.№6)
  20. Хусанов, Э.С., Шукуров, Ж.С., Тоғашаров, А.С. H3PO4•CO(NH2)2 - NН2C2H4OH - H2O системасида компонентларнинг эрувчанлигини ўрганиш. Комп. мат. Уз. науч. тех. Произ. жур. 2021. № 4. С. 3.
  21. Хусанов, Э.С., Шукуров, Ж.С., Тогашаров, А.С., Тухтаев, С. Растворимость компонентов в водной системе H3PO4CO(NH2)2NH(C2H4OH)2H2O.Ўзб. хим. журнал. Тошкент, 2022. №2 С.9-14.
  22. Кулаева, О.Н. Этилен в жизни растений // Соросовский Образовательный  Журнал. - 1998.- № 3. - С. 31-36.
  23. Исаев, Ф.Г. Действие этаноламинов на урожайность, качество и полегаемость растений // 12-й Менделеевский съезд по общ. и приклад. химии. Реф. Докл. и сообщ. М.: 1981. № 6. С. 157-158.
  24. Трунин, А.С., Петрова Д.Г. Визуально-политермический метод/ Куйбышевский политехн. Инс-т. – Куйбышев.: 1977, - 94 с. Деп. в ВИНИТИ №584-78.
Информация об авторах

Basic doctoral student, Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Republic of Uzbekistan, Tashkent

базовый докторант, Институт общей и неорганической химии АН Республики Узбекистан, Республика Узбекистан, г. Ташкент

Doctor of Science in Technics, Institute of General and Inorganic Chemistry of the AS RUz, Uzbekistan, Tashkent

д-р техн. наук, Институт общей и неорганической химии АН РУз, гл. науч. сотр., Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top