Doctor of Technical Sciences, deputy head of the innovation center Navoi Mining and Metallurgical Combine, Uzbekistan, Navoi
METHODS OF REDUCING THE DEPRESSING EFFECT OF THE SILICON BOND DURING SELECTIVE DISSOLUTION UNDERGROUND
ABSTRACT
Extraction of underground resources using efficient and modern and safe methods requiring low costs is considered one of the important tasks of society. Therefore, reducing the depressing effect of the silicon bond in the process of sorption during the selective transfer of uranium to a solution underground is the reason for the solution of many problems. a number of literature results were reviewed on this solution. a number of experiments were conducted to find a solution to this problem. in these experiments, the work of ensuring complete transfer of uranium to resins during the sorption process was considered.
АННОТАЦИЯ
Добыча недр с использованием эффективных, современных и безопасных методов, требующих небольших затрат, считается одной из важных задач общества. Поэтому снижение угнетающего действия кремниевой связи в процессе сорбции при селективном переводе урана в подземный раствор является причиной решения многих проблем. По этому решению был рассмотрен ряд литературных результатов. Для поиска решения этой проблемы был проведен ряд экспериментов. в этих экспериментах рассматривалась работа по обеспечению полного перехода урана в смолы в процессе сорбции.
Keywords: Uranium, Sorption, Dissorption, Silica, Resin, NaOH, Filter, Solution, Rubber, Ammonia
Ключевые слова: Уран, сорбция, диссорбция, кремнезем, смола, NaOH, фильтр, раствор, каучук, аммиак.
Today, silicon has its influence in the industry, it shows its depressant properties when it is selectively dissolved underground. Si is a chemical element belonging to group IV of Mendeleev's periodic system, sequence number 14, atomic mass 28.0855. There are three stable isotopes: 28Si (92.27%), MSi (4.68%) and 30Si (3.05%). After oxygen, silicon is the most abundant element in nature.
Silicon is a gray, silvery substance. It is available in amorphous and crystalline form. Crystalline silicon has a melting temperature of 1423° (the volume decreases by 9% when it is liquefied), a boiling point of 3249°C, and a density of 3.33 g/cm3 [1]
Silicon oxidizes to SiO2 under the influence of oxygen above 400°. It is resistant to acids, reacts only with a mixture of nitric and hydrofluoric acids. Silica reacts with alkalis, releasing hydrogen and forming silicates: Si+2NaOH+H2O=Na2SiO3+2H2T.
The problem of the influence of silicon and organic substances contained in uranium ores on selective melting processes underground is one of the sensitive tasks of uranium technology.
Despite the many studies available, we can see that this problem is still unsolved. [2]
On the other hand, there is well-researched evidence that organic matter can not only interfere with, but in some cases enhance, the selective dissolution of uranium underground.[3]
Thus, it is necessary to take into account the duality of the effect of organic matter and try to use its beneficial properties. [4]
This work, together with a number of scientists and doctoral students at the Central Research Laboratory of the Navoi Mining and Metallurgical Combine, is a direct attempt to find new approaches to solving these problems, that is, to exclude its harmful effects in the subsequent redistribution of uranium technology. It was started in order to try to remove silicates from the productive solution. [5]
Until now, various scientific organizations are conducting a lot of work on the activation of long-term processes of selective underground leaching, for example, with the help of various oxidizing agents.[6]
Sources of formation of organic substances in effective solutions of uranium selective dissolution underground. The influence of organic substances on the process of selective solution underground and subsequent redistribution was studied. [7]
Let's get acquainted with several terms related to the selective transfer of uranium to a solution underground:
Sorbents are solid or liquid substances used to absorb gases, vapors, and dissolved substances. Examples of sorbents include metal ions in the productive solution and resins that absorb ions of a number of similar elements.[8]
Sorbtiv-Sorbate is a productive solution. In this case, the substances contained in the solution are useful solutions that have not entered the resins, that is, they have not been absorbed.[9]
Adsorption is the concentration or absorption of liquid or gaseous substances on the surface of solid or liquid saturated substances (adsorbents).
Adsorption occurs due to the interaction of molecules on the surface of the adsorbent. [10]
The influence of different amounts of silicon on the sorption process of statics was studied during the sorption of uranium in laboratory conditions (picture №1). Liquid glass was used in the solution to form silicon. Liquid glass, soluble glass - solution of sodium or potassium silicates in water. The general formula is Me2O nSiO2 (where Me is Na or K). Chemically active, reacts with solid, liquid and gaseous substances.[11]
To do this process, S/Q (Liquid/Solid) ratio is 1/200. D-201U resin was used in the laboratory. The reference volume is 2.5cm3/g. It is mixed with air in a sorption device (rubber) for 2 hours. In this case, we can know that 40 grams of resin is produced when 100 ml of resin is produced.
Figure 1. laboratory installation for sorption in static mode
At first, liquid glass was added to the solution, in which liquid glass was not added to the solution in a bag, the purpose was to see how much silicon is in the solution in the solution we prepared. [12]
Table 1.
Сompleted laboratory work
Solution |
Liquid bottle quantity (ml) |
U (mg/g) |
SiO2 (mg/g) |
Liquid glassless solution |
0 ml |
39.5 mg/g |
<1 mg/g |
500 mg/l |
10 ml |
23.5 mg/g |
25 mg/g |
1000 mg/l |
20 ml |
36.3 mg/g |
52 mg/g |
1500 mg/l |
30 ml |
10.5 mg/g |
64 mg/g |
As can be seen from the table, we can see the absorption of silicon by the solutions in the patches. The sorption process is carried out for 24 hours. [13]
The amount of silicon in the original solution can be seen in Table 2 below.
Table 2.
The amount of silicon in the original solution
Initial solution mg/l |
SiO2 mg/l |
Liquid glassless solution |
<1 mg/l |
500 mg/l |
292.3 mg/l |
1000 mg/l |
163 mg/l |
1500 mg/l |
>300 mg/l |
In real conditions, the capacitance with respect to one counterion depends on a number of factors.
Basically, it is determined by the state of ion exchange equilibrium, and, therefore, depends on those factors that influence the ion exchange equilibrium, that is, it depends on the type of counterions, on the total concentration of the solution, on the type and concentration of competing ions, on selectivity, on the degree of transverse connectivity, etc.
The pH of the solution has a great influence on the capacity value; firstly, H+ and OH- ions often participate in ion exchange, and secondly, the pH value affects the degree of dissociation of the initial form of the ion exchanger. It was found that the amount of uranium and silicon oxides in the saturated resin is U = 6.8 mg/g and SiO2 - 91 mg/g, respectively.[14]
We have now continued this laboratory with a mixture of substances in order to continue this experiment. According to the literature analysis, we observed the process of desorption with NaOH and NH4OH (Sodium Hydroxide and Ammonia) solutions to reduce silica from our selected solution, and the results showed that our laboratory results show that we can achieve higher results with Sodium Hydroxide.[15]
After the resin is saturated, it is regenerated (“desorption”). Resin regeneration is carried out by replacing anionic complexes with Cl- or NO3- ions when their concentration increases. As desorbing solutions, use 1M NaCl, acidified with 0.1M HC1, or 1M NH4NO3, acidified with 0.1M HNO3 or 0.15M H2SO4.
Now let's get acquainted with the results of this laboratory:
As we know, taking into account the dissorption time in all processes with uranium as 3 hours, we put sodium hydroxide solution in a 1:5 solid/liquid state through a magnetic stirrer. In the analysis data of the solution, we can see that the amount of uranium released is 0.005 g/l, and the amount of SiO2 is 2700 mg/l. 50 ml of solution was added to the desorption process, and the amount of desorbate was 45 ml.[16]
In addition, every time we carry out laboratory work, we put the resin in a neutral state and get the conclusion of the analysis. In this case, we mention that the pH should be 6-7. In the summary of the result, we can see that U=4.1mg/g and SiO2 is 5mg/g.[17]
When desorption with ammonia, in the case of using the above, when the dissorption process was carried out for 3 hours, when we carried out a certain concentration of NH4OH+H2O, we got 18 ml + 32 ml = 50 ml, respectively. As a result, the composition of the solution was as follows. U=0.14 g/l and SiO2=216.7 g/l, and the desorbate was 46 ml, the amount of uranium and silicon in the resin was U=3.9mg/g, SiO2=82 mg/g, respectively. [18]
The results of the performed laboratory show that we can see from the results of the analysis that we can use it to reduce the depressing effect of the silicon bond of uranium in sorption when desorbing it with NaOH.
References:
- Шарафутдинов, У. З., Курбанов, М. А., Аликулов, Ш. Ш., & Ганиева, Д. С. (2021). Исследование сорбционных свойств анионитов при совместной сорбции урана и рения в процессе подземного выщелачивания урана. Горный информационно-аналитический бюллетень (научно-технический журнал), (3-1), 136-146.
- Аликулов, Ш. Ш., Курбанов, М. А., Шарафутдинов, У. З., & Халимов, И. У. (2019). Исследование гидродинамических параметров при подземном выщелачивании путем физического моделирования. Горный вестник Узбекистана.–Навои, (1), 77-82.
- Sharafutdinov, U. Z., Kurbanov, M. A., Alikulov, S. S., & Ganieva, D. S. (2021). Adsorption properties of anion-exchange resins in joint uranium and rhenium sorption during in-situ uranium leaching.
- Sh, A. S., Kurbanov, M. A., Sharafutdinov, U. Z., & Khalimov, I. U. (2019). Study of hydrodynamic parameters in in-situ leach by physical simulation. Gorniy vestnik Uzbekistana, (1), 77-82.
- Sanakulov, K., Kurbanov, M. A., & Sharafutdinov, U. Z. (2019). THE RESEARCHING SOME CONTAINIG ROCKS OF URANIUM ORES BY METHOD OF THE THERMAL ANALYSIS. Gorniy vestnik Uzbekistana, 2019(4), 45-48.
- Аликулов Шухрат Шарофович, Курбанов Машхур Амонович, Шарафутдинов Улугбек Зиятович, Ражаббоев Ибодулла Муродуллаевич, & Юлдашев Шохрух Шоназар Угли (2023). ИССЛЕДОВАНИЯ ПОВЕДЕНИЯ КРЕМНЕЗЕМА И ОРГАНИКИ В ПРОДУКТИВНЫХ РАСТВОРАХ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ УРАНА И ИХ ВЛИЯНИЯ НА ПРОЦЕСС СОРБЦИИ УРАНА. Universum: технические науки, (2-4 (107)), 22-27.
- U. Z., S.., O’. T., H.., & Sh. Sh., Y. . (2023). Yer Ostida Tanlab Eritmaga O’tkazishda Kremniy Bog’lanmasini Dipressiyalovchi Ta’sirini Kamaytirish Usullari. Miasto Przyszłości, 40, 87–90. Retrieved from https://miastoprzyszlosci.com.pl/index.php/mp/article/view/1778
- Шарафутдинов Улугбек Зиятович, Ражаббоев Ибодулла Муродуллаевич, Эшонова Гулноза Алиевна, & Юлдашев Шохрух Шоназар Угли (2023). ИССЛЕДОВАНИЯ ВЛИЯНИЯ ФОСФАТ ИОНОВ НА ПРОЦЕСС ПОЛУЧЕНИЕ УРАНА. Universum: технические науки
- Ослоповский Сергей Александрович, Курбанов Машхур Амонович, Очилова Иззатой Джумамуродовна, Нурмухаммадова Нилуфар Элмуродовна, Юсупова Севара Сахатовна, Ибрагимов Равшан Раимович, & Юлдашев Шохрух Шоназар Ўғли (2023). РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ПЯТИОКИСИ ВАНАДИЯ ИЗ ТЕХНОГЕННОГО СЫРЬЯ. Universum: технические науки, (2-3 (107)), 67-71., (7-4 (112)), 5-9.
- Kholmurodovich, S. L., & Shonazarovich, Y. S. (2022). Исследование Качественные, Физико-Химические И Минералогические Свойственные Показатели Сырья Минеральных Футеровочных Кирпичей. Central Asian Journal of Theoretical and Applied Science, 3(2), 129-142.
- Ражаббоев, И. М., Шарафутдинов, У. З., Остонов, О. И. У., & Нурмуротова, Ш. О. К. (2021). Исследования влияния хлорид-ионов в процессе сорбции и десорбции урана. Universum: технические науки, (3-3 (84)), 64-67.
- Sharipov, K. T., Sharafutdinov, U. Z., Rajabboev, I. M., & Khujaev, J. E. (2017). Analysis of productive solutions and uranium sorption on anionits. Austrian Journal of Technical and Natural Sciences, (1-2), 111-113.
- Шарипов, Х. Т., & Шарафутдинов, У. З. (2016). Процесс бикарбонатного подземного выщелачивания урана из высококарбонатных руд. Universum: технические науки, (9 (30)), 59-62.
- Eshonova, G., Razhabboev, I., Kadirova, Z., Daminova, S., Koldarov, A., Atamuratova, M., & Sharafutdinov, U. (2023). Modeling of competitive sorption of uranium by the BO020 anion-exchange resin. In E3S Web of Conferences (Vol. 417, p. 02019). EDP Sciences.
- Sharafutdinov, U., Razhabboev, I., Kadirova, Z., Daminova, S., Koldarov, A., & Atamuratova, M. (2023). Simultaneous ion-exchange sorption of uranium with concomitant impurities. In E3S Web of Conferences (Vol. 417, p. 02020). EDP Sciences.
- Sharafutdinov, U. Z., & Alikulov Shukhrat Sharofovich, G. D. (2021). Mining informational and analytical bulletin (scientific and technical journal).
- Muzafarov, A. M., Kulmatov, R. A., & Sharafutdinov, U. Z. (2021). Mining informational and analytical bulletin (scientific and technical journal).
- Музафаров, А. М., Мустафоев, М. А., Кулматов, Р. А., & Шарафутдинов, У. З. (2021). АНАЛИЗ ЗОЛОТА И СОПУТСТВУЮЩИХ ЭЛЕМЕНТОВ В ИОНООБМЕННЫХ СМОЛАХ С ПОМОЩЬЮ ИНСТРУМЕНТАЛЬНОГО НЕЙТРОННО-АКТИВАЦИОННОГО МЕТОДА. Горный информационно-аналитический бюллетень (научно-технический журнал), (3-1), 110-118.