APPLICATION OF MATHEMATICAL MODELING FOR THE SYNTHESIS OF NEW ALLOYS

ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ СИНТЕЗА НОВЫХ СПЛАВОВ
Цитировать:
APPLICATION OF MATHEMATICAL MODELING FOR THE SYNTHESIS OF NEW ALLOYS // Universum: технические науки : электрон. научн. журн. Karimov K. [и др.]. 2023. 10(115). URL: https://7universum.com/ru/tech/archive/item/16071 (дата обращения: 27.04.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2023.115.10.16071

 

ABSTRACT

It has been determined that the creation of mathematical models of alloy synthesis processes is supported for the production of promising new alloys in the foundry industry.

АННОТАЦИЯ

Было определено, что создание математических моделей процессов синтеза сплавов поддерживается для получения перспективных новых сплавов в литейном производстве.

 

Keywords: mathematical modeling, synthesis and application, new alloy.

Ключевые слова: математическое моделирование, синтез и применение, новый сплав.

 

Scientists of Uzbekistan  and Tajikistan  have developed technologies for the high-temperature processing of industrial slags [1] and wastes [2], separation processing in electric furnaces [3] and a technology for extracting metals from liquid slag [1]. Let's give some examples [4, 5]. In addition, studies have been carried out on the anodic behavior and oxidation of the Zn22Al alloy doped with scandium, yttrium and erbium [6–8]. At the same time, reliable protection against the corrosive effects of the agents in which they operate is necessary. In the practice of protecting semi-finished steel products from corrosion, zinc-aluminum coatings such as “galfan” (Zn5Al, Zn55Al) [9–11] Zn22Al [12–14] and “galvalum” (Zn55Al-1.6Si) are currently used in various aggressive environments.

To develop a new alloy, it seems necessary to select an appropriate method of mathematical modeling while taking into account the technological process [15, 16]. Below are the tasks for the development and analytical implementation of the mathematical model.

In numerical programming problems with a wide range of applied problems, the extremum of a function (objective function) is determined which borders on a system of linear equations and inequalities. The mathematical model of the general linear programming problem has the form:

                        (1)

In other words, this task is reduced to the task of qualitative assessment of economic, technical technological processes and determination of optimal solutions. If problem (1) has solutions, then the objective function reaches an extremum.

We explain this problem with the following problem. Suppose a metallurgical plant produces three types of alloys from raw materials A and B. The percentages of raw materials in the alloys are presented in the table below. In total, the plant has 7 tons of raw materials of type A and 17 tons of raw materials of type B. A ton of the first alloy costs 1.5 million conventional units, the second - 1.6 million conventional units, the third - 1.2 million conventional units. In this case, the need for the third alloy should not exceed 12 tons, and the need for the first alloy should not be less than 5 tons. The question is, how many tons of each alloy should be produced to achieve maximum economic efficiency?

Table 1.

The percentages of raw materials in the alloys

Alloy

Alloy Tupe

1

2

3

А

8 %

17 %

20 %

Б

92 %

83 %

80 %

 

To solve the problem, it is necessary to develop a mathematical model. In accordance with the general model (1), we introduce the target function:

                     (2)

The conditions set in the task require the implementation of the following inequalities:

                                        (3)

To solve problems (2) and (3), the MathCAD method will build the following sequence of operations:

                                     (4)

Then we have

                                              (5)

                                 (6)

Now we consider the issue of assessing the change in the percentage of oxygen in the alloy by changing the amount of aluminum in the electrode using mathematical modeling.

We determine the percentage of oxygen in the alloy corresponding to a change in the amount of aluminum in the electrode depending on the diameter of the crystallizer. According to general mathematical theories, this problem is solved using the regression model. From the point of view of linear algebra, the functional connection is determined by the solution of the system of linear algebraic equations. If we denote the interpolation in the form of a function, then it is necessary to solve the system of equations:

                                                     (7)

Thus, we can conclude that when the first alloy is generated, 6.15 tons of the second and 12 tons of the third alloy will achieve the greatest economic effect (31,892 million conditional units). From synthesized new alloys, machine parts are made.

 

References:

  1. Grachev V., Turakhodjaev N. Influence of liquid aluminum alloy treatment at temperatures up to 2000 0C in terms of the alloy structure and gas aluminum oxides content. International Journal of Mechanical Engineering and Technology. 2018. 9(7). P. 489–495.
  2. Karimov K., Turahodjaev N., Akhmedov A., Tashbulatov Sh. A mathematical model of the technology of extraction of copper from industrial slags. E3S Web of Conferences. 2021. 264. 04077. DOI: 10.1051/e3sconf/202126404077.
  3. Karimov K., Turahodjaev N., Akhmedov A., Chorshanbiev Sh. Mathematical model for producing machine parts. E3S Web of Conferences. 2021. 264. 04078. DOI: 10.1051/e3sconf/202126404078.
  4. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 1. Zn and 5% Al-Zn coatings. Corrosion. 1991. V. 47. N 4. P. 9–13.  
  5. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 2. 55% Al-Zn coatings. Corrosion. 1991. V. 47. N 4. P. 17–30.
  6. Mirmuhamedov M.M., Jobirov U.R., Obidov Z.R. Anodic behavior of Zn22Al alloy, doped with erbium. Journal of Siberian Federal University. Engineering & technologies. 2023. V. 16. N. 3. P. 354-362. EDN: ZKSOTU.
  7. Mirmuhamedov M.M. Kinetics of Interaction of Hard Alloys Zn22Al-Er System with Oxygen in the Gas Phase. Universum – Technical Science. Metallurgy and Materials Science. 2022. №12 (105). P. 61-63. DOI: 10/32743/UniTech. 2022.105.12.1470314775.
  8. Мирмухамедов М.М., Джобиров У.Р., Ганиев И.Н., Обидов З.Р. Анодное поведение и окисление сплава Zn22Al, легированного скандием. Вопросы материаловедения. 2023. Т. 114. № 2. С. 147-154. DOI: 10.22349/1994-6716-2023-114-2-147-154 [In Russian].
  9. Obidov Z.R. Effect of pH on the Anodic Behavior of Beryllium and Magnesium Doped Alloy Zn55Al. Russian Journal of Applied Chemistry. 2015. V. 88. N 9. P. 1451–1457. DOI: 10.1134/S1070427215090116.
  10. Obidov Z.R. Anodic Behavior and Oxidation of Strontium – Doped Zn5Al and Zn55Al Alloys. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. N 3. Р. 352–355. DOI: 10.1134/S2070205112030136.
  11. Obidov Z.R. Thermophysical Properties and Thermodynamic Functions of the Beryllium, Magnesium and Praseodymium Alloyed Zn-55Al Alloy. High Temperature. 2017. V. 55. N 1. P. 150–153. DOI: 10.1134/S0018151X17010163.
  12. Sharipov J.Kh., Aliev F.A., Ganiev I.N., Obidov Z.R.  Anodic Behavior and Oxidation of Thallium – Containing Alloy Zn22Al. Inorganic Materials. 2023. V. 59. N 5. P. 475–480. DOI: 10.1134/S0020168523050163.
  13. Sharipov J.H., Hakimov I.B., Obidov Z.R. The Influence of Thallium Additives on the Kinetics of Oxidation of the Zn22Al alloy. Journal of Siberian Federal University. Engineering & Technologies. 2023. V. 16. N 3. P. 369-370. EDN: JWUYWP.
  14. Sharipov J.Kh. Kinetics of Interaction of Hard Alloys Zn22Al-Tl System with Oxygen in the Gas Phase. UNIVERSUM – Technical Science. Metallurgy and Materials Science. 2022. №12 (105). P. 64–66. DOI: 10/32743/UniTech. 2022.105.12.1470314777.
  15. Turakhodjaev N., Tursunbaev S., Karimov K. and etc. The effect of lithium content on the mass of the part when alloyed with lithium aluminum. International Journal of Mechatronics and Applied Mechanics. 2022. 11. P. 52-57. DOI: 10.17683.
  16. Turakhujaeva Sh., Turakhodjaev N., Karimov K., Akhmedov A. Mathematical modeling of quantitative changes in hydrogen and oxide inclusions in aluminum alloy. E3S Web of Conferences. 2023. 365. 05016. DOI: 10.1051/e3sconf/ 202336505016.
Информация об авторах

Doctor of Technical Sciences, Professor, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р техн. наук, профессор, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences, Professor, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р техн. наук, профессор, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences (DSc), Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р техн. наук (DSc) Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Applicant, Khujand National University, Republic of Tajikistan, Khujand

соискатель, Худжандский государственный университет им. акад. Б. Гафурова, Республика Таджикистан, г. Худжанд

Applicant, Khujand National University, Republic of Tajikistan, Khujand

соискатель, Худжандский государственный университет им. акад. Б. Гафурова, Республика Таджикистан, г. Худжанд

Doctor of Chemical Sciences, Professor, Tajik Technical University named after academician M.S. Osimi, Republic of Tajikistan, Dushanbe

д-р хим. наук, профессор, Таджикский технический университет имени академика М.С. Осими, Республика Таджикистан, г. Душанбе

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top