EXPERIMENTAL DETERMINATION OF RESISTANCE COEFFICIENTS IN THE CASE OF WATER SPRINKLED ON A CONE-SHAPED APPARATUS

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ СОПРОТИВЛЕНИЯ ПРИ РАЗБРЫЗГИВАНИИ ВОДЫ НА КОНУСНО СЕТЧАТОГО УСТРОЙСТВА
Цитировать:
Karimov I.T., Qo‘chqarov B.U. EXPERIMENTAL DETERMINATION OF RESISTANCE COEFFICIENTS IN THE CASE OF WATER SPRINKLED ON A CONE-SHAPED APPARATUS // Universum: технические науки : электрон. научн. журн. 2023. 9(114). URL: https://7universum.com/ru/tech/archive/item/15956 (дата обращения: 18.12.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2023.114.9.15956

 

ABSTRACT

In this article, 3 different sizes of conical mats were selected for the working body of the cone mat wet vacuum cleaner created by us. For each grid, the liquid consumption is changed separately when the gas consumption changes. Based on the experiments, the resistance coefficients of each mesh in the watered state were determined. As a result, an opportunity was created to determine the total pressures lost in the working body of the device. The efficiency of cleaning is determined by determining the total pressures lost when the liquid is sprayed on the working body of the device with a conical contact.

АННОТАЦИЯ

В данной статье были выбраны для рабочего органа 3 разных размера конусообразных сеток созданного нами конуснно сетчатого устройства для мокрой очиски пыли Для каждой сетки расход жидкости изменяется отдельно при изменении расхода газа.На основе экспериментов были определены коэффициенты сопротивления каждой сетки в орошенном состоянии. В результате появилась возможность определения полных давлений, теряемых в рабочем органе устройства.Эффективность очистки определяют путем определения полных потерь давления при орошении жидкости на конусообразно сетчатого рабочего органа устройства.

 

Keywords: dusty gas, flow rate, wet method, liquid, cone mesh, gas velocity, resistance coefficient,

Ключевые слова: запыленный газ, расход, мокрый способ, жидкость, конусная сетка, скорость газа, коэффициент сопротивления.

 

Introduction

The method of wet cleaning of dusty gas and air is used when it is necessary to moisten and cool the purified gas, and when the size of the separated particles is extremely small. This cleaning method is based on contact with the dust gas washing liquid. The phase contact surface between the dust gas and the liquid is formed in the moving liquid film or in the liquid droplets. Regarding the advantages of these devices, the following can be cited. Relatively low production costs, high efficiency, a cleaning rate of up to 99.9% even for small particles, although there is a risk of explosion of purified gas or dust, it can also be used at high temperatures and air humidity. It is important to determine the hydraulic resistance coefficients in its working parts when sludge dust removal devices in the wet method [1,4,5,6]. Therefore, in this scientific research work, the results of an experimental study conducted in determining hydraulic resistances in the working parts of a cone-set dust removal device are presented.

Object of study

As an object of research, a formula was used to calculate the total resistance coefficient of the apparatus caused by the experimental device of the cone-set apparatus (figure 1and 2) and theoretical studies, created at the Department of “Technological machines and equipment” of the Fergana Polytechnic Institute [1,4,6].

 

Figure 1. Schematic of the device with a cone:

1-bottom conical sludge bath, 2- upper conical cleaning chamber, 3- conical mesh, 3a-mesh support, 4-water sprinkling nozzle, , 5-water distribution pipe, 6- powder gas inlet pipe, 7- cleaned gas discharge pipe, 8- water tank, 9-water tap, 10-water pipe, 11-water rotameter, 12- sludge discharge pipe, 13- sludge tap, 14-sludge, 15- fan driving dusty air, 16-dust air tap, 17-rotameter, 18-dusty gas transmission pipe

 

Figure 2. Overview of the cone-shaped apparatus:

a- general view of the apparatus, b-the case where the conical mesh is installed on the device body. v- View of a conical mesh

 

The results obtained

In order to calculate the total pressure lost in the apparatus, the local resistances of the apparatus and the resistance coefficients of the metal mesh with different hole sizes installed on the drum, which is the main working body of the apparatus, were determined [2]. In the experimental studies, 3 different sizes of stainless steel mesh with square holes of brand ГОСТ 3826-82, 12Х18Н10Т were selected.

Grid sizes: 1. Square hole size a=1,1mm, wire thickness δ=0,16 mm;

2. Square hole size a=1,3mm, wire thickness δ=0,18 mm;

3. Square hole size a=1,6mm, wire thickness δ=0,2 mm [1].

Based on experimental studies conducted to simplify calculations, the coefficient of local resistance in the inlet and outlet pipe of dusty air to the apparatus was ξм=0,6. The formula for calculating the total resistance of the device is presented in the following form [2]

                                                                                                   (1)

With the help of this formula, it is possible to determine the resistance coefficient in the state where the liquid is not sprayed on the device. In the next task, each selected grid was installed on a cone support and focused on conducting experimental studies on determining the total hydraulic resistance of the apparatus in the state of water sprinkled. Conical meshes with square hole size a=1,1; 1,3; 1,6 mm are installed on the device, gas consumption for each of them is Q=170÷850 m3/hour (with a step of 170 m3/hour) constant gas expenses were given. At each gas flow rate, Qs=0.3÷1.2 m3/h (with a step of 0.3 m3/h) was sprinkled with water from 12 S32-412 brand nozzles. At each step of the water sprinkled on the selected conical grids, gas consumption from the apparatus was determined. Through differences in gas consumption, the resistance coefficients in the state of spraying water on the apparatus were determined. The results of the experiment were processed by the least squares method on the basis of the computer program and graphs of dependence were constructed (Fig. 3).

 

Figure 3. The graph of the change of the resistance coefficient depending on the fluid consumption

 

When the size of the square hole of the 1st mesh is a=1.1 mm const; When the size of the square hole of the 2 nd mesh is a=1.3 mm const; When the size of the square hole of the 3rd mesh is a=1.6 mm const; Gas consumption is between Qgas= 170÷850 m3/h

The resulting regression equations are as follows

when a=1,1 mm const:

                                           y = 0,2733x + 2,53     R² = 0,9859                                                    (2)

when a=1,3 mm const:

                                           y = 0,3133x + 2,25     R² = 0,9973                                                  (3)

when a=1,6 mm const:

                                            y = 0,2633x + 2,11    R² = 0,955                                                   (4)

From the graph depicted in Figure 3, it can be seen that when the size of the square hole of grid 1 is a=1,1mm, the flow rate is changed in the range of Q=0.3÷1.2 m3/h (with a step of 0.3 m3/h), the resistance coefficient with the change of the flow rate it is observed that the lower and upper limit values ​​increase in the range of ξ=2.62÷2.87. Similarly, when the 2nd mesh square hole size a=1,3mm mesh is placed, the resistance coefficient increases between the lower and upper limit values ξ=2,51÷2,74 when the above liquid consumption is given; When the size of the square hole of grid 3 is a=1,6 mm, the resistance coefficients increase in the range of ξ =2,24 ÷ 2,38, given the same fluid consumption. Based on the results of experimental studies, resistance coefficients were determined by spraying liquid on the working surfaces of 3 different sizes of square meshes selected for the device. Using these determined resistance coefficients, the total pressures in the water sprayed state and the efficiency of dust gas purification are determined [3].

Conclusion

As a result of experimental studies, 3 different sizes of cone-shaped grids were selected for the working body of the recommended wet dust cleaning conical device. For each grid, the liquid consumption was changed separately when the gas consumption changed, and the resistance coefficients of each grid in the water-sprayed state were determined based on experiments. According to the results obtained, an opportunity was created to determine the total pressures lost in the working body of the device. The efficiency of cleaning is determined by determining the total pressures lost in the case of spraying liquid into the working organ of the device with a conical set.

 

References:

  1. Ikromali T.Karimov, Bobirmirzo U. Kochkarov “WET METHOD DUST GAS CLEANING DEVICE” Proceeding VIII International Conference Industrial Technologies and Engineering” ICITE - 2021, Volume II. M. Auezov South Kazakhstan University, Shymkent, Kazakhstan November 10-11,2021.
  2. Ikromali K., Bobirmirzo Q. C. RESISTANCE COEFFICIENTS OF THE APPARATUS WITH CONE MESH WET CLEANING OF DUST GASES // Universum: технические науки. – 2023. – №. 1-5 (106). – С. 8-13.
  3. Ikromali, K., & Bobirmirzo, Q. C. (2023). ANALYSIS OF THE DISPERSE COMPOSITION OF DUST OF COTTON CLEANING INDUSTRIES. Universum: технические науки, (4-7 (109)), 60-64.
  4. Каримов И.Т., Қучқаров Б.У. “Чангли газларни ҳўл усулда тозаловчи янги аппарат” Фарғона политехника институти илмий – техника журнали Scientific-technical journal (STJ FerPI, ФарПИ ИТЖ, НТЖ ФерПИ, 2021, T.24, спец. №1
  5. Мадаминова Г. И., Тожиев Р. Ж., Каримов И. Т. Барабанное устройство для мокрой очистки запыленного газа и воздуха //Universum: технические науки. – 2021. – №. 5-4 (86). – С. 45-49.
  6. Tojimatovich K. I., Ulugbekovich K. B. Wet Method Dust Gas Cleaning Device // The American Journal of Engineering and Technology. – 2021. – Т. 3. – №. 10. – С. 20-26.
Информация об авторах

Doctor of Technical Sciences (DSc), Professor, Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

д-р техн. наук, профессор, Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Assistant, Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

ассистент, Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top