NON-TRADITIONAL TECHNOLOGIES OF EXTRACTION OF PRECIOUS METALS FROM INDUSTRIAL TECHNOGENIC WASTE

НЕТРАДИЦИОННОЕ ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЕ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ТЕХНОГЕННЫХ ОТХОДОВ
Цитировать:
NON-TRADITIONAL TECHNOLOGIES OF EXTRACTION OF PRECIOUS METALS FROM INDUSTRIAL TECHNOGENIC WASTE // Universum: технические науки : электрон. научн. журн. Vohidov B. [и др.]. 2023. 4(109). URL: https://7universum.com/ru/tech/archive/item/15359 (дата обращения: 22.12.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2023.109.4.15359

 

ABSTRACT

In this article discusses the possibility of combining the products of enrichment of waste from metallurgical production and the chemical technology for the extraction of platinum and palladium from ChMA concentrates obtained after processing industrial technogenic wastes from the Chodak Mining Administration. In this research work is determined the effectiveness of methods for the selective leaching of platinum and palladium, and also pays attention to the methods of dissolution, reduction of platinum metals and methods for their purification from various impurities.

АННОТАЦИЯ

В данной статье рассматривается возможность объединения продуктов обогащение отходов металлургического производства и химическая технология извлечения платины и палладия из концентратов ЧРУ полученных после переработки техногенных отходов Чодакского Рудоуправлении. В работе определена эффективность методов селективного выщелачивание платины и палладия, а также уделено внимание способам растворения, восстановления платиновых металлов и методам их очистки из различных примесей.

 

Keywords: tailings, gravity separation, mineralogical composition, platinum, electron microscope, leaching.

Ключевые слова: отходы обогащения, гравитационное обогащение, минералогический состав, платина, электронный микроскоп, выщелачивание.

 

Today, in the conditions of Uzbekistan, there is no integrated technology for processing industrial technogenic wastes and extracting rare and precious metals in the conditions of AGMK JSC with small amounts of rare metals. The presence of technogenic waste containing platinum, palladium and rhodium at JSC AGMK indicates that the plant can manage the manufacturing industry by processing wastes for several years without processing ore [1].

The total amount of enrichment wastes of the Chodak mine administration is 1.844 million tons. The average content of gold ranges from 0.5 g/t to 0.67 g/t, the silver contents in average is 8.27 g/t, and significant contents of platinum group metals, in particular platinum and palladium, were also found. As a result of gravitational enrichment of technogenic wastes of the Chodak Mining Administration (ChMA), a gravity concentrate is obtained with a gold content of 5.65 g / t, silver 38.76 g / t, platinum 1.5-2 g / t, palladium 5-7 g / t [2,3].

The mineralogical composition and structure of the concentrate obtained as a result of the enrichment of technogenic waste from ChMA were studied under a JSM-IT200 scanning electron microscope. As a result of the analysis, it was founded that platinum is denser, that is parts of the sample reflecting light more brightly and it is more associated with palladium and oxygen, and the amount of platinum in the studied sample is 0.25% (See Figure 1.). Further experiments are aimed at the development of chemical technologies for the extraction of individual noble metals from platinoids. For this purpose, the initial sulfuric acid leaching of ChMA concentrates was chosen to remove impurity metals such as copper, iron and zinc, which are further directed to leaching, the gradual extraction of gold and silver, and by the end of the processes it is planned to extract platinum and palladium using aqua regia and selective precipitation [4].

 

Figure 1. Electron microscopy images of ChMA concentrate

 

According to the described technology, an experimental flowsheet for the processing of ChMA concentrates was developed in the conditions of the refinery of JSC "AGMK" and the series of experiments were carried out for the integrated extraction of noble and plane metals (see Fig. 2.). [5].

The process of processing of concentrates begins with the treatment of sulfuric acid solutions to transfer non-ferrous metals into the composition of the solution.

In this case, precious metals remain in the insoluble residue and are sent to refining processes.

The sulfates of non-ferrous metals are returned to the main copper production. For reliable solubility of impurity non-ferrous metals, the concentrate is often subjected to roasting before the leaching process [6].

MeS + 4H24MeSO4 + 4Н2О + 4SО2                                               (1)

MeO + H24MeSО4 + H2О                                                          (2)

Me + 2H24 → MeSО4 + 2H2О + SО2                                                (3)

At the same time, the metal occurs in the form of a compound of Cu, Zn, Fe, Co, and other non-ferrous metals, thus purifying the concentrate from non-ferrous metals. The remaining insoluble cake is dissolved in two ways to test the effectiveness of the solvent.

At the first stage, the cake was dissolved with a nitric acid solution; the results of the dissolution of metals are shown in the table 1. Based on the analysis of nitric acid solutions, the degree of solubility of metals is lower, for these reasons it was no longer checked for nitric acid solution, and the cake was directly subjected to aqua regia dissolution [7]. The chemistry of the processes of aqua regia dissolution is given in reactions 4-7:

Au + HNO3 + 3HCl = AuCl3 + NO + 2H2O                                                   (4)

Ag + HNO3 + 3HCl = AgCl2 + NO + 2H2O                                                   (5)

3Pt + 4HNO3 + 18HCl = 3H2[PtCl6]+ 4NO + 8H2O                                         (6)

3Pd + 4HNO3 + 18HCl = 3H2[PdCl6]+ 4NO + 8H2O                                        (7)

In order to remove the undissolved part of the product, a filtration process is carried out, the cake is removed and the valuable components are in solution.


 

Figure 2. The proposed technological scheme for the processing of ChMA concentrates with the extraction of precious metals

 

Gold and silver are separately precipitated from the solutions and sent to the refinery department, while the rest platinum and palladium remain in the solution [8]. For the selective separation of platinum, the solution is treated with a small amount of ammonium chloride in order to separate platinum from the palladium-containing solution, the process is carried out in a reactor with mechanical stirring according to the following reaction [9].

2PtCl6 + 2NH4Cl = ↓(NH4)2PtCl6 + 2HCl                                 (8)

The precipitated platinum is separated from the solution through filtration and the precipitate goes for further processing (the platinum complex is calcined, treated with a nitric acid solution, washed and we get the purest platinum powder, see Table 2.) The solution containing palladium goes to neutralize and precipitate the solution from impurities [10].

Table 1.

Results of the chemical analysis of the aqua leaching of the concentrate

 Samples

Dissolution method

Defined Elements, mg/l

Au

Pd

Pt

Ag

11

aqua regia solution

20

82

11

70

12

aqua regia solution

6

23

5

20

13

aqua regia solution

6

14

7

24

14

aqua regia solution

9

810

4

13

15

aqua regia solution

12

1000

5

18

16

aqua regia solution

424

21

21

81

17

solution

2

3

2

10

18

solution

2

10

3

21

19

aqua regia solution

35

28

12

46

20

aqua regia solution

20

10

21

81

21

aqua regia solution

6

64

18

21

22

aqua regia solution

12

13

8

16

 

According to the results which were obtained experimentally, it can be seen that insoluble chlorpalladosamine is precipitated from a solution with hydrochloric acid: HCl consumption is 1 liter per 100 g of palladium powder.

Pd(NH3)4Cl2 + 2HCl = Pd(NH3)2Cl2 + 2NH4Cl                        (9)

After filtration and washing, chloropalladosamine is calcined at elevated temperatures and decomposed to produce palladium metal. After calcination, the palladium powder is subjected to manual abrasion [11].

Recovery with formic and citric acids, washing and drying: The resulting composition of the powder contains Pb, Sn and other metal impurities in a very small amount. To remove impurities, we treat with citric acid and, after removing impurities, wash the powder with distilled water and dry the product, and a pure Pd powder is formed [12].

Pd(NH3)2Cl→ Pd + 2HCl↑ + N2↑ +  2H2                                 (10)

As a result of extensive research work, including a number of experiments, a new technological scheme was developed. The advantages of the recommended technology are: high purity of the derivable palladium and platinum powder with lower energy costs, high productivity, savings in reagents, and a high degree of extraction of precious metals. The method is also applicable in an ecological point of view, since the resulting acidic filtrates are neutralized with an alkali solution or alkaline filtrates obtained by reducing palladium to metal with formic acid or hydrochloric hydrazine [13].

Table 2.

 Results of chemical analysis of the resulting platinum and platinum powder

Name

 

Element content, %

Pt

Pd

Rh

Ir

Ru

Au

Pb

Fe

Si

Sn

Al

 

Pt powder

 

99,98

0,01

0,0012

0,0002

0,0018

0,002

0,002

0,0012

<0,002

<0,0001

0,002

 

Element content, %

Sb

Ag

Mg

Zn

Cu

Ni

Mn

Cr

Co

Ca

 

 

0,002

0,002

0,0003

<0,0001

0,001

0,001

0,001

0,001

0,001

0,005

 

 

Pd powder

Element content, %

Pd

Pt

Rh

Ir

Ru

Au

Pb

Fe

Si

Sn

Al

99,94

0,0022

0,0310

0,0003

0,0039

0,0032

<0,0001

0,0055

<0,0001

<0,0001

0,0003

Element content, %

Sb

Ag

Mg

Zn

Cu

Ni

Mn

Cr

Co

Ca

 

0,0022

<0,0001

0,0001

<0,0001

0,0050

0,0012

0,0001

0,0006

0,0005

0,0004

 

 

Under laboratory conditions, several experiments were carried out on the extraction of palladium and platinum powder from ChMA concentrates in the refinery of JSC AGMK. The experiments were carried out in different concentrations of the solvent to determine the optimal mode of the technological cycle [14].

The results of the experiments are presented in Table 1 and the results of the obtained pure metals are shown in Table 2. The introduction of this technology will give an undoubted economic effect due to the additional extraction of valuable components and improve the environmental situation in places where man-made waste accumulates [15].

 

Список литературы:

  1. Вохидов Б.Р. // Разработка технологии получения платиновых металлов из техногенных отходов. // Научно-методический журнал Евразийский союз ученых (ЕСУ): Москва, 2020. Июнь №6(75). C.38-46.
  2. Шарипов Х.Т., Борбат В.Ф., Даминова Ш.Ш., Кадирова З.Ч. Химия и технология платиновых металлов. Тошкент «Университет» 2018г. С. 3-5., 14-17., 14-28., 35-40.
  3. Толибов Б.И., Саидахмедова Л.А., Шоназаров М.И. Изучение термодинамики окислительного обжига, диссоциация сульфидов и оксидов при окислении // Development of a modern education system and creative ideas for it, republican scientific-practical on-line conference on "suggestions and solutions, 15- may 2022 part-37/2, стр. 598-601.
  4. У.А. Эргашев, Р.А. Хамидов Содержание серы и углерода - основной критерий упорности пенного продукта процесса биоокисления // Universum: технические науки: электрон. научн. журн. 2021. 5(86). URL: https://7universum.com/ru/tech/archive/item/11787 стр. 4, (33).
  5. Zhakhongir Narzullayev and Evgeniy Kuznetsov Prerequisites for Processing a Foam Product in the Process of Bacterial Oxidation of Gold-Bearing Concentrates in a Separate Cycle // The Second Interregional Conference “Sustainable Development of Eurasian Mining Regions (SDEMR-2021)1Kemerovo, Russian Federation, September 21-23, 2021 стр. 4, (33).
  6. Санакулов К., Хамидов Х.И., Фузайлов О.У, Нарзуллаев Ж.Н. Исследование изменения состава и структуры минералов в хвостах сорбции кека биоокисления в процессе обжига современными физико-химическими методами // Горный Вестник Узбекистана №90, июль-сентябр 2022.С 46-52. Навои, стр. 7, (25).
  7. Вохидов Б.Р., Хасанов А.С. Creation of technology for the extraction of palladium from waste electrolytes by aqua regia leaching. International conference on «Integrated innovative development of Zarafshan region: achievements, challenges and prospects» Navoi, Uzb. 2019y. P.35-39.
  8. Хамидов Р.А., Нарзуллаев Ж.Н. Перспектива отдельной переработки пенного продукта процесса бактериального окисления золотосодержащих руд // Современные тенденции и инновации в науке и производстве: Х международная научно-практическая конференция. - Кузбас, 2021. - С.177.
  9. Самадов А.У., Хужакулов Н.Б., Хужамов У.У., Махмудова Ф.М. Изучение возможности усовершенствования технологии переработки руд месторождений «Аджибугут» // Academy. 2021. №5 (68).
  10. Самадов А.У., Хужамов У.У., Буронов А.Б. Исследование технологии переработки электронного лома // Научный журнал Universum: Технические науки. - 2021. - №10(91). - С.72-74.
  11. Саидахмедов А.А., Хасанов А.С., Хужамов У.У. Исследование интенсификации процесса фильтрации растворов выщелачивания при переработке техногенных отходов // Научный журнал Universum: Технические науки. - 2020. - № 9(78). – С.62-67.
  12. Вохидов Б.Р., Хасанов А.С. // Исследование и разработка технологии извлечения металлов платиновых групп из техногенного сырья АО «АГМК» // XIV Международной конференции. Институт химии и химической технологии Сибирского отделения РАН, Красноярск, 6-9 сентября, 2021г. С. 29-32.
  13. Хужамов У.У., Каримов У.Х. Анализ способов переработки урановых руд и практика переработки урановых руд за рубежом // Academy. - 2020. - № 1(52). – С.70.
  14. Тагаев И.А., Андрийко Л.С., Вохидов Б. Р., Бойхонова М. Ю., Хужакулов Н.Б., Нарзуллаев Ж.Н. Подбор исходного местного сырья и изучение дериватографических показателей для получения сорбентов // Universum: технические науки. 2020. №9-2 (78).
  15. Самадов А.У., Хужакулов Н.Б., Хужамов У.У. Гидрометаллургик заводларнинг чиқинди омборини геотехнологик тадқиқоти методологияси // Ўзбекистон кончилик хабарномаси. – Навоий, 2019. ‒ №2. – С.11-13.
Информация об авторах

Doctor of Technical Sciences, Prof., Navoi State University of Mining and Technology, Republic of Uzbekistan, Navoi

д-р техн. наук, проф. Навоийский государственный горно-технологический университет, Республика Узбекистан, г. Навои

PhD, assistant professor, Navoi State University of Mining and Technology, Republic of Uzbekistan, Navoi

д.ф.т.н.(PhD), доцент, Навоийский государственный горно-технологический университет Республика Узбекистан, г. Навои

Doctoral student, Navoi State University of Mining and Technology, Republic of Uzbekistan, Navoi

докторант, Навоийский государственный горно-технологический университет, Республика Узбекистан, г. Навои

Assistant, Department of Metallurgy, Navoi State Mining and Technology University, Republic of Uzbekistan, Navoi

ассистент, Навоийский государственный горно-технологический университет, Республика Узбекистан, г. Навои

Master, Navoi State University of Mining and Technology, Republic of Uzbekistan, Navoi

магистрант, Навоийский государственный горно-технологический университет, Республика Узбекистан, г. Навои

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top