RESEARCH AND DEVELOPMENT OF EFFECTIVE COMPOSITIONS OF ANTI-CORROSION COMPOSITE POLYMER MATERIALS AND COATINGS

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОРГАНОМИНЕРАЛЬНЫХ НАПОЛНИТЕЛЕЙ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТЕРМОРЕАКТИВНЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ И РАЗРАБОТКА ЭФФЕКТИВНЫХ СОСТАВОВ АНТИКОРРОЗИОННЫХ ПОКРЫТИЙ НА ИХ ОСНОВЕ
Цитировать:
RESEARCH AND DEVELOPMENT OF EFFECTIVE COMPOSITIONS OF ANTI-CORROSION COMPOSITE POLYMER MATERIALS AND COATINGS // Universum: технические науки : электрон. научн. журн. Negmatov S. [и др.]. 2023. 3(108). URL: https://7universum.com/ru/tech/archive/item/15158 (дата обращения: 19.04.2024).
Прочитать статью:

 

ABSTRACT

The article discusses the results of a study on the development of effective compositions of anticorrosive composite polymer materials and coatings filled with organomineral ingredients based on epoxy resins ED-16 and ED-20. The compositions of the developed anticorrosive polymer compositions and the main physical-chemical and mechanical properties of the developed anticorrosive compositions based on oligomers and other organic-mineral ingredients are given.

АННОТАЦИЯ

В статье рассмотрены результаты исследования по разработке эффективных составов антикоррозионных композиционных полимерных материалов и покрытий, наполненных органоминеральными ингредиентами на основе эпоксидных смол ЭД-16 и ЭД-20. Приведены составы разработанных антикоррозионных полимерных композиций и основные физико-химические и механические свойства разработанных антикоррозионных композиций на основе олигомеров и других органоминеральных ингредиентов.

 

Keywords: anticorrosive materials, composition of the composition, corrosion, adhesive strength, polymer coating, epoxy resin, physical-chemical properties.

Ключевые слова: антикоррозионные материалы, состав композиции, коррозия, адгезионная прочность, полимерное покрытие, эпоксидная смола, физико-химические свойства.

 

Introduction

Currently, modern complex and expensive technological equipment, operated in aggressive conditions of oil and gas and metallurgical enterprises, are exposed to corrosion. Corrosion destruction of structures, pipes, tanks and other equipment of these enterprises always requires the development of anti-corrosion protection. Effective anti-corrosion protection provides a long period of equipment operation without repair, reduces the cost of metal production, and also saves energy resources [1, 2].

The use of epoxy compositions, as a rule, is associated with the use of modifiers (fillers, plasticizers, etc.) that regulate the structure and properties of materials. The curing of such multicomponent systems is a complex process involving both the formation of a spatially cross-linked polymer matrix and the formation of its structure. The degree of structuring of the polymer system depends not only on the bond strength of the polymer-filler and the specific surface area of the latter, but also on the type, content and ratio of fillers in the composition.

In our republic works are being carried out to increase the durability of technological equipment at industrial and other enterprises operating in aggressive environments, which are of particular relevance in the current conditions of the development of economic relations [3-5].

Sufficiently wide application for anticorrosion protection in the chemical, petrochemical and metallurgical industries has found coatings made of composite thermosetting and thermoplastic polymeric and paintwork materials [6, 7].

Polymer composite coatings protect chemical devices, machine parts, pipe fittings, steel structures from moisture absorption and mechanical damage from corrosion; increase the antifriction and wear-resistant properties of parts and friction units made of insufficiently wear-resistant materials; eliminate or reduce the adhesion of processed materials to the surface of the equipment, provide electrical insulation, etc. [8-13].

The aim of the study is to develop anti-corrosion composite polymer materials and coatings based on local raw materials and industrial waste for the use of oil and gas pipelines.

Object and methods of research

The objects of study are epoxy resin - ED-16, ED-20 and fillers talc, titanium oxide, carbon black, Angren kaolin - AKT-10, graphite, zinc oxide, and also as a hardener - polyethylenepolyamine - PEPA, as a plasticizer - gossypol resin .

To determine the physical-mechanical and protective properties of the developed anti-corrosion polymer composite materials and coatings based on them, modern methods of physical-chemical and mechanical analyzes were used: Fourier (IR) - spectroscopy, modulus of elasticity in bending, microhardness, ultimate strength in bending, heat resistance according to Viku, dielectric constant, specific surface electrical resistance, chemical resistance coefficient and others.

Research results and their analysis

To determine the quality of the developed anti-corrosion polymer composite materials and coatings based on them, the influence of organic-mineral fillers on their basis of physico-chemical and mechanical properties was used.

In this work, the influence of selected organic-mineral fillers on the properties of polymers such as kaolin, titanium oxide, graphite, talc, carbon black and zinc oxide, which are representatives of mineral fillers and metal oxides and electrically conductive fillers, was studied.

The results of studies of the influence of the studied organic-mineral fillers on the adhesion strength and microhardness of anticorrosive composite epoxy polymeric materials are shown in Figures 1 and 2.

 

а)

b)

1 - graphite; 2 - soot; 3 - titanium oxide

Figure 1. Dependence of adhesive strength (a) and microhardness (b) of anticorrosive composite epoxy polymer coatings based on ED-16 on the type and content of organic-mineral fillers

 

а)

b)

1- kaolin; 2- soot; 3- talc

Figure 2. Dependence of adhesive strength (a) and microhardness (b) of anticorrosive composite epoxy polymer coatings based on ED-20 on the type and content of organic-mineral fillers

 

As can be seen from Figures 1 and 2, the dependence of adhesive strength and microhardness on the content of fillers is extreme. The adhesive strength increases with an increase in the content of kaolin up to 80 parts by weight, soot up to 40 parts by weight, talc up to 40 parts by weight, zinc oxide up to 25 parts by weight, in the composition of coatings based on ED-16 or ED- 20. A further increase in the content of this filler, and their high dispersion play the role of a center in the preparation of compositions and the curing process ends with higher degrees of crosslinking.

The greatest increase in the microhardness of coatings is observed with the introduction of such fillers as kaolin, zinc oxide and titanium. This is obviously due to the fact that, due to the greater mobility of the structural elements, a more ordered structure of densely packed polymer chains is formed near the filler particles. With a further increase in the content of fillers, a decrease in adhesive strength and microhardness is observed. This nature of the dependence of adhesive strength and microhardness on the content of fillers is due to the fact that with a high content of fillers, their uneven distribution leads to a decrease in density in other indicators. In addition, the presence of highly polar functional groups in the composition of mineral fillers enhances their interaction with the binder, which contributes to the formation of stronger physical bonds between the filler and the polymer. An increase in the content of titanium oxide and zinc increases the strength and corrosion resistance of the composition due to the formation of a metal coordination bond [14–16].

The extreme nature of the change in strength properties can also be explained by the molecular interaction between the polymer and the filler, which occurs between the active and functional groups of epoxy oligomers and fillers due to chemical interaction with the formation of strong chemical bonds.

Based on the results of our studies [1, 2, 17] of the mechanisms of the above identified regularities, new compositions of effective anti-corrosion composite materials (ACCM) and coatings from them based on organo-mineral fillers were developed. The composition of the developed epoxy anti-corrosion polymer compositions are shown in Table 1.

Table 1.

Compositions of the developed anti-corrosion polymer compositions

Components

Component content, %

ACCM -1

ACCM -2

ACCM -3

Epoxy oligomer ED-16 or ED-20

60

ED -16

55

ED -20

50

ED -16 1:1 ED -20

gossypol resin

15

20

25

PEPA

12

12

12

zinc oxide

 

 

5

Talc

 

4

3

Graphite

4

 

 

Kaolin

 

4

 

Soot

5

5

5

titanium oxide

4

 

 

 

An IR spectroscopic study was carried out on one of the developed anti-corrosion polymer composite materials and coatings based on the ED-16 oligomer and other organic-inorganic ingredients, which are shown in Figure 3.

 

Figure 3. IR spectrum of the developed anticorrosive polymeric composite material APC-1 based on the ED-16 oligomer

 

As can be seen from the IR spectrum of the developed anticorrosion epoxy polymer composite materials (Fig. 3), this composition exhibits a change in the degree of absorption in the regions of 3458, 3354, 2926, 2853, 1580, 1490, 1350, 1000, 730, 529, 489 cm-1, due to the presence of –С=О, –СООН, -NH, -NCO, –СОН, Zn-O-С, Ti-O-С groups. The introduction of zinc oxide and titanium oxide as a filler affects the structure of the polymer matrix of the epoxy resin and leads to an increase in the intensity of the peaks. This suggests that a chemical reaction occurs between the hydroxyl, carboxyl, and amine groups of the modified epoxy polymer compositions with fillers due to valence and deformation bonds.

Despite the decrease in the electrical resistivity of filled epoxy polymers [18, 19], they retain their adhesive strength well in aggressive media, which makes it possible to significantly improve their anticorrosion properties. With this in mind, we have developed an effective composition of the anticorrosion composition for the production of protective coatings from them ACCM -3.

Table 2 shows the average coefficient of chemical resistance of the developed anticorrosion composite epoxy polymeric materials and coatings based on them.

Table 2.

Chemical resistance of the developed anticorrosion composite epoxy polymeric materials and coatings based on them

Properties

Indicators

Chemical resistance coefficient

after 30 days in: 50% СН3СООН

 40% HNО3

 25% НСl

 40% H2SО4

 in water

 

0,68

0,71

0,74

0,78

0,76

 

Conclusion

Thus, effective compositions of anticorrosive composite polymeric materials and coatings based on the epoxy oligomer ED-16 and ED-20 and organic-mineral fillers have been developed for corrosion-preventing metals operating in aggressive environments.

 

References:

  1. Negmatova, K. S., Ikramova, M. E., Kochkarov, U. K., Negmatov, S. S., Abed, N. S., Sultanov, S. U., ... & Masharipova, M. M. (2022). Study of the physicochemical characteristics of the destruction of composite polymeric materials and coatings under the influence of aggressive media. Universum: Engineering Sciences, (3-2(96)), 5-14.
  2. Negmatov, S., Rahmonov, B., Sobirov, B., Abdullaev, A., Salimsakov, Y., Negmatov, J., Negmatova, M., Soliev, R., Mahkamov, D., 2011. Developing of Effective Multipurpose Polymer-Bitumen Compositions. AMR. https://doi.org/10.4028/www.scientific.net/amr.413.539
  3. Khakimov R., Ibragimov B., Airapetov D. The possibility of reducing noise and vibration of transport and technological machines by applying a multifunctional anti-corrosion coating // Society and innovations. - 2022. - Vol. 3. - No. 6/S. – S. 188-194.
  4. Bulatov A.S., Streletsky N.S. and others. In the book: Protection of chemical equipment with non-metallic coatings. Moscow: Chemistry, 1989, 225 p.
  5. Naibova T. M., Alieva Z. N., Abbasova K. G. Anti-corrosion coatings based on modified phenol-formaldehyde and epoxy oligomers // Actual problems of the humanities and natural sciences. – 2012. – no. 11. - S. 34-37.
  6. Nasriddinov A.Sh., Negmatov S.S., Negmatova K.S., Madrahimov A.M. Anticorrosive Composite Polymer Coatings for Corrosion Protection of Equipment of Gold Recovery Factories // International Journal of Advanced Research in Science, Engineering and Technology www.ijarset.com Vol. 7, Issue 10, October 2020.
  7. Khusanov Sh.Z., Tillaev R.S., Babakhanova M.G., Teshabaeva E.U. Development of anti-corrosion coating in the automotive industry. Uzbek chem. magazine 1999, No. 3, - P. 68-72.
  8. Sanjar Sultanov, Madina Babakhanovа, Surayo Yulchiyeva, Muxabbat Masharipova & Shavkat Jovliyev. Research of the Chemical Destruction Process of Composite Epoxide Materials Under the Influence of Environment Tashkent State Technical University named after I. Karimov, Tashkent, Uzbekistan.
  9. Babakhanova M.G., Islamov D.U., Abdurakhmanov A.A. et al. Study of the completeness of polymer coating curing by physical and chemical methods. Journal. "Composite Materials". 2001, No. 2, -S. 11-17.
  10. Polyansky S. N. et al. Surface preparation for applying anti-corrosion coatings on metal structures and parts of mechanisms made of carbon steels // Modern problems of science and education. – 2014. – no. 4. - S. 233.
  11. Nosirova JI.T., Tillaev R.S., Babakhanova M.G. etc. Filled anti-corrosion coatings. Uzbek chem. magazine 1999, No. 4, -S. 19-22.
  12. Yuldashev N.Kh., Zhumaniyazov M.Zh., Dyusebekov B.D., Khodzhaev O.F. Technology for obtaining an anticorrosive composition based on local raw materials. // Composite materials. 2002. No. 3.-S.53-54.
  13. Corrosion and protection of metals. At 2 p.m. 1. Research methods of corrosion processes: teaching aid / N.G. Rossina, N.A. Popov, M.A. Zhilyakova, A.V. Korelin. Yekaterinburg: Publishing House Ural. un-ta, 2019.- 108 p.
  14. Konstantinov V. M., Ivanitsky N. I., Astreiko L. A. Anticorrosion zinc coatings on steel products: prospects for thermal diffusion coatings // Casting and metallurgy. – 2013. – no. 4 (73). - S. 107-110.
  15. Tarasenko A. A. et al. Technology for diagnosing vertical steel tanks without removing the anti-corrosion coating // Fundamental research. – 2014. – no. 9-8. - S. 1703-1708.
  16. Pestov A. V. et al. Obtaining a new material based on epoxy oligomers for the formation of a protective anti-corrosion coating // Journal of Applied Chemistry. - 2020. - T. 93. - No. 3. - S. 385-391.
  17. Ivanova O. V., Korotkova L. N., Khalikov R. M. Management of the quality of application of protective macromolecular coatings on pipeline equipment in the oil and gas industry // Modern materials, equipment and technologies. – 2019. – no. 3 (24). - S. 43-46.
  18. Babakhanova, M. G., Negmatova, K. S., Sultonov, S. U., Babakhanovа, M. A., & Ahmedova, D. U. (2022). Investigation of the influence of fillers on the adhesive properties of composite polymer coatings. Thematics Journal of Chemistry, 6(1).
  19. Negmatov, S. S., Madaminov, B. M., Yulchieva, S. B., Negmatova, K. S., Kuchkarov, U. K., Rubidinov, Sh. G. U.,... & Mamurov, E. T. (2021). Anticorrosive composite silicate materials for the protection of chemical industry equipment. Universum: Engineering Sciences, (10-3(91)), 61-66.
Информация об авторах

Academician of the Academy of Sciences of the Republic of Uzbekistan, scientific consultant of the State Unitary Enterprise "Fan va tarakkiyot" at the Tashkent State Technical University named after Islam Karimov, Republic of Uzbekistan, Tashkent

академик АН Республики Узбекистан, д-р. техн. наук, профессор, ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

SUE “Fan va tarakkiyot”, Tashkent state technical university, Republic of Uzbekistan, Tashkent

докторант ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences, Professor, Chairman of the State Unitary Enterprise "Fan va Tarakkiyot" at the Tashkent State Technical University named after Islam Karimov, Uzbekistan, Tashkent

д-р техн. наук, профессор, председатель ГУП «Фан ва тараккиёт» при Ташкентском государственном техническом университете имени Ислама Каримова, Узбекистан, г. Ташкент

Doctor of Technical Sciences, Professor, State Unitary Enterprise "Fan va Tarakkiyot" at the Tashkent State Technical University named after Islam Karimov, Uzbekistan, Tashkent

д-р техн. наук, профессор, ГУП «Фан ва тараккиёт» при Ташкентском государственном техническом университете имени Ислама Каримова, Узбекистан, г. Ташкент

Doctor of Philosophy in Engineering Sciences, (PhD), senior researcher, SUE “Fan va taraккiyot”, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р филос. по техн. наук, (PhD), ст. научн. сотр., ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Philosophy in Engineering Sciences, (PhD), senior researcher, SUE “Fan va taraккiyot”, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р филос. по техн. наук, (PhD), ст. научн. сотр., ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of technical sciences, professor, SUE “Fan va tarakkiyot”, Tashkent state technical university, Republic of Uzbekistan, Tashkent

д-р. техн. наук, профессор ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Philosophy in Engineering Sciences, (PhD), SUE “Fan va taraккiyot”, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

д-р филос. по техн. наук, (PhD) ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctoral student of State Unitary Enterprise “Fan va tarakkiyot”, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

докторант ГУП “Фан ва тараккиёт”, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top