APPLICATION OF COMPUTER- AIDED DESIGN (CAD) SYSTEMS WHEN SOLVING ENGINEERING SURVEY TASKS

ПРИМЕНЕНИЕ СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ (САПР) ПРИ РЕШЕНИИ ЗАДАЧ ИНЖЕНЕРНЫХ ИЗЫСКАНИЙ
Цитировать:
APPLICATION OF COMPUTER- AIDED DESIGN (CAD) SYSTEMS WHEN SOLVING ENGINEERING SURVEY TASKS // Universum: технические науки : электрон. научн. журн. Yusufov A. [и др.]. 2023. 3(108). URL: https://7universum.com/ru/tech/archive/item/15088 (дата обращения: 21.11.2024).
Прочитать статью:

 

ABSTRACT

Currently, computer-aided design systems are widely used in various branches of mechanical engineering in the automotive industry, railway transport, air transport, water transport and in general in all branches of mechanical engineering. Computer-aided design systems are regularly used to solve existing problems in engineering research. In engineering research, the finite element method is being rapidly introduced in the study of the stress-strain state of metal structures. The application of the finite element method makes it possible to increase the accuracy of calculations, as well as to determine the units of complex shape and stress at their junctions.

АННОТАЦИЯ

В настоящее время системы автоматизированного проектирования широко применяются в различных отраслях машиностроения в автомобильной промышленности, на железнодорожном транспорте, воздушном транспорте, водном транспорте и вообще во всех отраслях машиностроения. Системы автоматизированного проектирования регулярно используются для решения существующих проблем в инженерных исследованиях. В инженерных исследованиях быстро внедряется метод конечных элементов при исследовании напряженно-деформированного состояния металлических конструкций. Применение метода конечных элементов позволяет повысить точность расчетов, а также определить единицы сложной формы и напряжения в местах их соединений.

 

Keywords: Finite Element Method (FEM), basic structures, Locomotive frame, bogie frame, SolidWorks modeling, residual resource, statistical analysis, dynamic analysis.

Ключевые слова: Метод Конечных Элементов (МКЭ), рама локомотива, рама тележки, моделирование SolidWorks, остаточный ресурс, статистический анализ, динамический анализ.

 

Introduction. At the moment, the modeling direction is an innovative and advanced method to ensure the desired level of product properties at the design stage in technical industries.  Namely, the simulation route can prevent accidents and ensure the safety of traffic. In the field of modeling, there are the following problems:

  • difficulties in the reliability of data and properties of the modeling object;
  • varieties of the model operator;
  • modeling goals;
  • method of model research;
  • objects of research;
  • the model belongs to the hierarchical level of the object description;
  • the nature of the displayed properties;
  • calculation procedure;
  • using process control modeling.

Mathematical modeling is a simulation in which the study of an object is performed by means of a model formulated in the language of arithmetic. For example, the description and study of Newton's laws of mechanics by means of mathematical formulas [1,2,3].

In comparison with full- scale modeling, mathematical modeling has the following advantages:

  1. cost-effectiveness (in particular, saving the resources of a real system);
  2. the possibility of modeling hypothetical, that is, objects that are not realized in nature (primarily at different stages of design);
  3. the possibility of implementing dangerous or difficult-to-reproduce modes in nature (critical mode of a nuclear reactor, operation of a missile defense system);
  4. the ability to change time scales; simplicity of multidimensional analysis;
  5. great predictive power due to the possibility of identifying common patterns;
  6. the versatility of the technical and software of the work carried out (computers, programming systems and packages of general-purpose application programs) [4,5].

Currently, mathematical modeling is entering the third fundamentally important stage of its development, integrating into the structure of the information society. “Raw information” usually provides little for analysis and forecasting, for making decisions and monitoring their execution. Reliable recycling methods are needed information raw materials in the finished product – accurate knowledge.

A mathematical model should describe not only specific individual phenomena or objects, but a fairly wide range of heterogeneous phenomena and objects. One of the fruitful approaches to modeling complex objects is the use of analogies with already studied phenomena. Example: oscillation processes in objects of different nature.

  1. Identification of significant factors. The basic principle: if there are several factors of the same order in the system, then all of them should be taken into account or discarded.
  2. Allocation of additional conditions (initial, boundary, conjugation conditions, etc.).

Mathematical justification of the model. Investigation of the internal consistency of the model. Justification of the correctness of the differential model. Proof of the existence, uniqueness and stability theorems of the solution. Qualitative research of the model. Elucidation of the behavior of the model in extreme and extreme situations.

Numerical study of the model:

  1. algorithm development;
  2. development of numerical methods for the study of the model;
  3. the developed methods should be sufficiently general, algorithmic and allowing for the possibility of parallelization;
  4. creation and implementation of the program.

Nowadays there are many computer programs for 3D modeling. They differ in the accuracy of the created models, animation and visualization capabilities. The most accurate and complex 3D modeling software systems are used for industrial and machine-building design. Usually such complexes are called computer-aided design (CAD) systems.

Foreign:

  • SolidWorks (France, Dassault Systemes)
  • Fusion 360 (USA, Autodesk)
  • Inventor (USA, Autodesk)
  • Solid Edge (Germany, Siemens PLM Software)

Russian:

  • Compass
  • ADEM

CAD developers have made specialized versions of software complexes according to their application profiles:

  • Mechanical engineering
  • Construction
  • Instrumentation
  • Electrical diagrams [6,7,8]

The structures of the mechanical part of the traction rolling stock, the shape and dimensions of their bearing elements are determined by the deformations and stresses in them from the workloads specified in the design assignment, regulatory operating modes and environmental conditions (including extreme) [9]. Their actual loading, which is necessary for a reliable assessment of strength and resource, is studied based on the results of running dynamic strength tests of the locomotive on various elements of the track. The operational load of the studied crew components is determined by the methods of locomotive motion modeling using modern software systems such as Solidworks, AutoCAD, Kompas 3-D, Ansys, etc.

The railway branch of transport is one of the most important branches for ensuring brisk economic growth. Today, active work is underway, taking into account the trends in modernization and renewal of the existing locomotive fleet. The locomotive fleet is one of the most important and necessary cogs of the industry, providing cargo transportation and passengers. The organization of non-hazardous operation of locomotives directly may depend on the efficiency and condition of the rolling stock used [10,11].

Apart from this, software methods and tools for collecting and managing information about the locomotive, namely the locomotive's load-bearing structures, are being developed and intensively used, mathematical analysis methods are used for analysis and processing (Fig.1).

In addition to this, software methods and tools for collecting and managing information about the locomotive, namely the supporting structures of the locomotive, are being developed and intensively used, mathematical analysis methods are used for analysis and processing [12]. In the following Figures 1, 2 the main frame of the locomotive and the bogie frame were modeled by the finite element method.

 

Figure 1. A finite element model of the bogie frame with interface nodes, made using the Solidworks program

 

Under the load-bearing structures, there are, due to the design of the locomotive, which perceive operational loads. According to research, the largest percentage of locomotive failures in operation is associated with bogies, bodies and main frames. In the final years, the concrete bearing structures of the rolling stock underwent the principal configurations. The limiting conditions, load-bearing capacity and strength reserves of locomotives are shown by load-bearing structures (main frame, body, bogie frame) [13].

The elements of the supporting structure are evaluated based on the comparison of the forces arising in them from the acting mechanical loads, thermal, magnetic and other fields with the forces that bring these elements to the limit states. The criteria for limit states vary depending on the operating conditions of structures, mechanical properties of the materials used, loading modes and thermal conditions [9].

The strength of the elements of the supporting structure is estimated on the basis of comparing the forces arising in them from the acting mechanical loads, thermal, magnetic and other fields with those forces that bring these elements to the limit states. The aspects of the limit states are different without the help of criteria for the operation of structures, mechanical parameters of the materials used, loading modes and thermal criteria [14].

 

Figure 2. Calculation scheme implemented in the SolidWorks software package

 

The bearing capacity of the parts of the crew part structure is evaluated under the action of the calculated loads established by the real standard according to the permissible values:

  • voltage;
  • deformations;
  • fatigue resistance reserve coefficients;
  • stability margin coefficients [15].

 

References:

  1. Хамидов О. Р. и др. Прогнозирование остаточного ресурса главной рамы и продление сроков службы маневровых локомотивов на АО “УТЙ” // Universum: технические науки. – 2022. – №. 4-5 (97). – С. 47-54.
  2. Khamidov O. et al. Remaining life of main frame and extension of service life of shunting Locomotives on railways of Republic of Uzbekistan //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 365. – С. 05008.
  3. Khamidov O. et al. Evaluation of the technical condition of locomotives using modern methods and tools //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 365. – С. 05004.
  4. Zayniddinov N., Abdurasulov S. Durability analysis of locomotive load bearing welded structures //Science and innovation. – 2022. – Т. 1. – №. A8. – С. 176-181.
  5. Yusufov A. O‘zbekiston respublikasi temir yo ‘llaridagi manevr lokomotivlarini tahlili va rivojlanish istiqbollari //Science and innovation. – 2022. – Т. 1. – №. A8. – С. 943-950.
  6. Yusufov A. M. “O ‘ZBEKISTON TEMIR YO ‘LLARI” AJ lokomotiv parki tahlili // Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 11. – С. 251-258.
  7. Хамидов О. Р. и др. Продлению остаточного ресурса главной рамы тепловоза серии ТЭМ2 с методом конечных элементов (МКЭ) //Инновационные подходы, проблемы, предложения и решения в науке и образовании. – 2022. – Т. 1. – №. 1. – С. 148-153.
  8. Хамидов О. Р. и др. Виды повреждений несущих конструкций и технологические аспекты их возникновения //Инновационные подходы, проблемы, предложения и решения в науке и образовании. – 2022. – Т. 1. – №. 1. – С. 142-147.
  9. Хамидов, О. Р., et al. “Обследование технического состояния маневрового тепловоза серии ТЭМ2.” Academic research in modern science 1.9 (2022): 125-132.
  10. Разработка метода для определения динамической нагруженности узлов подвижного состава с применением неразрушающего контроля / Н. С. Кодиров, А. М. Юсуфов, О. Р. Хамидов, М. Ш. Валиев // Приборы и методы измерений, контроля качества и диагностики в промышленности и на транспорте: Материалы V всероссийской научно-технической конференции с международным участием, Омск, 27–28 октября 2022 года. – Омск: Омский государственный университет путей сообщения, 2022. – С. 98-105. – EDN KAMPZS.
  11. Аблялимов, О. С. Обоснование параметров перевозочной работы локомотивов дизельной тяги в эксплуатации / О. С. Аблялимов, А. М. Юсуфов, А. П. Вохидов //. – 2016. – № 4(58). – С. 15-20. – EDN WXQSXH.
  12. Yusufov A. M. et al. Lokomotivlarning texnik holatini bort tizimi yordamida aniqlash //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 9. – С. 600-605.
  13. Yusufov A., Azimov S., Jamilov S. Determination of Residential Service of Locomotives in the Locomotive Park of JSC //Uzbekistan Railways"" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN. – С. 2456-6470.
  14. Yusufov A. M., et al. Temir yo ‘l tortuv harakat tarkibi issiqlik kuch qurilmalarini avtomatik boshqarish va diagnostika tizimi //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 9. – С. 613-618.
  15. Валиев М. Ш., Шеримбетов А. А., Шерзамин Х. А. Моделирования расчётной схемы металлоконструкции унифицированной рамы тележки тепловоза // Современные научные исследования и инновации. – 2018. – №. 3. – С. 4-4.
Информация об авторах

Doctoral student PhD, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

докторант Phd, Ташкентский государственный университет транспорта, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences, Head of the chair«Loсomotives and locomotive еconomy» Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

д-р техн. наук, заведующий кафедрой «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Candidate of Technical Sciences, Associate Professor Tashkent State Transport University, Republic of Uzbekistan, Tashkent

канд. техн. наук, доц., Ташкентский государственный университет транспорта, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный университет транспорта, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный университет транспорта, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top