CONTROLLED AC STABILIZERS ON THE PRINCIPLE OF INDUCTION LEVITATION

УПРАВЛЯЕМЫЕ СТАБИЛИЗАТОРЫ ПЕРЕМЕННОГО ТОКА НА ПРИНЦИПЕ ИНДУКЦИОННОЙ ЛЕВИТАЦИИ
Kerimzade G.S.
Цитировать:
Kerimzade G.S. CONTROLLED AC STABILIZERS ON THE PRINCIPLE OF INDUCTION LEVITATION // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15081 (дата обращения: 22.12.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2023.107.2.15081

 

ABSTRACT

In the presented article, some characteristic features of the characteristics of precision controlled high-precision AC stabilizers based on the principle of induction levitation are considered. Determining the output characteristics, establishing analytical relationships between the initial data and the output parameters of the stabilizer is one of the stages of the algorithm for solving the problems of designing the parameters of an AC stabilizer with induction levitation of the moving part.

The stability and shape of the load current determines the reliability, accuracy, efficiency, service life of automation devices, test equipment and galvanic baths. This, in turn, contributes to the development of a mathematical model of the system of equations of electrical, magnetic, mechanical and thermal circuits of the stabilizer, the joint solution of which allows you to establish analytical relationships between the initial data and parameters such as working stroke, weight force, winding and core cross-sections, copper losses.

АННОТАЦИЯ

В представленной статье рассмотрены некоторые характерные особенности характеристик  прецизионных управляемых высокоточных стабилизаторов переменного тока на принципе индукционной левитации. Определение выходных характеристик, установление аналитических связей между исходными данными и выходными параметрами стабилизатора является одним из этапов алгоритма для решения задач проектирования параметров стабилизатора переменного тока с индукционной левитацией подвижной части.

Стабильность и форма тока нагрузки определяет надежность, точность, экономичность, срок службы устройств автоматики, испытательной аппаратуры и гальванических ванн. Это в свою очередь способствует разработке математической модели системы уравнений электрических, магнитных, механических и тепловых цепей стабилизатора, совместное решение которых позволяет установить аналитические связи между исходными данными и параметрами как рабочий ход, сила веса, сечения обмоток и сердечника, потери в меди.

 

Keywords: current stabilizer, induction levitation, moving part, high-precision, controlled, precision, source, dependence, levitation winding.

Ключевые слова: стабилизатор тока, индукционная левитация, подвижная часть, высокоточный, управляемый, прецизионный, источник, зависимость, левитационная обмотка.

 

Introduction

Reliability, accuracy, efficiency and service life of automation devices, information and measuring equipment, test equipment and galvanic baths are determined by the stability and shape of the load current. Basically, the sources of power for various devices and installations are power networks, and the constancy of the voltage in such networks is usually not observed, and there are always short-term and slow voltage fluctuations. Such voltage fluctuations in many cases are unacceptable, as they lead to disruption of the normal operation of the equipment. A necessary condition for ensuring the specified accuracy is the stability of the load current. The task of stabilizing the current and voltage at the load is characterized by parametric and controlled stabilizers, the principle of operation of which is based on the use of various physical phenomena. The operation of most of these stabilizers is based on the use of a non-linear current-voltage characteristic of various elements used in stabilizer circuits. The movable anchor, being subjected to the action of the weight force Рв and the force of attraction Fe, automatically finds the equilibrium position Feв(the point of intersection of the traction characteristic Fe(X) and the horizontal direct weight force Рв).When the armature is moved, the inductance of the winding and its resistance change. In this case, the steady state value of the current is defined as:

                                                           (1)

The derivative inductance L with respect to the displacement of the core X is a constant value only for a narrow range of displacements x = X2 - X1. Therefore, the current stabilizes in a small range of supply voltage changes (6-8)%. The operation of these stabilizers is based on the principle of magnetic suspension of ferromagnetic cores. A controlled electrodynamic stabilizer allows you to smoothly adjust the value of the stabilized current. The stabilizer has an elongated magnetic circuit, on which a fixed and a moving AC coil are located. The moving coil is mounted on a mobile device (trolley) and can move freely along the magnetic circuit.

Another type of controlled stabilizers are stabilizers with induction levitation windings, which are much simpler than existing ones in design, provide high stabilization accuracy when the supply voltage changes over a wide range, allow you to simultaneously obtain several nominal values of the stabilized current, the shape of the stabilized current curves is close to a sinusoid if the supply voltage sinusoidally (fig. 1). The main disadvantages of these stabilizers are the possibility of their operation in the vertical position of the magnetic circuit and in the absence of vibration and shaking [1,3-8].

 

Figure 1. Volt-ampere characteristic of electrodynamic stabilizer

 

Algorithm for solving the problem

 One of the stages of the algorithm for solving the problems of designing the parameters of an AC stabilizer with inductive levitation of the moving part is the determination of output characteristics, the establishment of analytical relationships between the initial data and the output parameters of the stabilizer, design, which includes the fluctuation and magnitude of the mains voltage ΔUс=Ucmax-Ucmin, Unom and load current Iн. The stabilizer must be designed for the rated load current Iн and for the rated voltage Uн, at which the levitation coordinate corresponds to the initial position of the levitation winding. Design criteria: allowable overheating of the windings τд1 and τд2, allowable voltage increment at the terminals of the supply winding ΔU1 and allowable increment of the stabilized current at the load ΔIн [3-6]. The basis of design is the establishment of analytical relationships between the initial data and geometric dimensions. This requires the development of a mathematical model consisting of a system of equations of electric, magnetic, mechanical and thermal stabilizer circuits, the joint solution of which allows you to establish analytical relationships between the initial data and the working stroke xM, the weight force Pв, the sections of the windings So and the core Sc, copper losses РМ . The initial values for calculating an AC stabilizer with inductive levitation of the moving part are the range of mains voltage change ΔUс, load currents Iн1, Iн2, …Iнн, mains frequency w, load resistance Rн or load power Рн, as well as the stroke of the moving part xМ or minimum levitation coordinate value hmin. The levitation coordinate h is a linear function of the voltage U1:                               

                                                             (2)

The maximum and minimum values of the levitation coordinate will be determined by the voltages U1max and U1min, respectively. Maximum stroke LW:

                            (3)

The specific magnetic conductivity of the working air gap can be determined by the formula:

                                                 (4)

To ensure the uniformity of the magnetic field of the working air gap, the following ratios are recommended:

                                                 (5)

Table 1 shows the calculated values of the specific magnetic conductivity λ and the buckling coefficient σв. Figure 2 shows the dependence  for different values of the weight force, which shows that with an increase in the nominal values of the current I1, the ratio  decreases if the weight force of the levitation winding is constant. This is the case for multi-rated AC stabilizers, where with the switching of sections of the fixed winding, the current I1 changes, and the weight force remains constant. The coefficient Кн takes into account the voltage drop UR on the load Rн. Figure 3 shows the dependence. Кн=f(Рн) for different values of load resistance Rн. [4]. Another important characteristic is the dependence of the weight force of the induction levitation winding (ILW) Pв on the current I1, which is shown in fig. 4 for various values of the stroke xM. It shows that with an increase in current, the force of the weight increases, and with an increase in the stroke xM, it decreases. For supplying electroplating baths and test benches, for automated control of calibration parameters of measuring instruments, etc. precision current stabilizers are used as a power source.

 Table 1.

Estimated values of  l and  sв

в/с

в/а

2.0

2.5

3.0

4.0

5.0

6.0

2.0

sв

1.85

1.72

1.61

1.48

1.38

1.34

 

l

6.73

6.98

7.44

8.00

8.64

9.30

2.5

sв

1.68

1.57

1.49

1.39

1.32

1.27

 

l

7.97

8.30

8.73

9.36

9.86

10.55

3.0

sв

1.56

1.47

1.40

1.32

1.26

1.22

 

l

9.30

9.60

10.00

10.64

11.20

11.86

4.0

sв

1.42

1.36

1.31

1.24

1.20

1.17

 

l

11.75

12.06

12.4

13.10

13.60

14.20

5.0

sв

1.34

1.29

1.25

1.19

1.16

1.13

 

l

14.24

14.60

15.00

15.7

16.2

16.83

6.0

sв

1.28

1.24

1.2

1.16

1.13

1.11

 

l

16.8

17.00

17.60

18.16

18.76

19.40

 

Figure 2. Dependence  for different values of the weight force Рв.

 

Figure 3. Dependence Кн=f(Рн) for different values of Rн

 

Analytical expressions for a number of basic dependencies have been obtained that characterize the ability of current stabilizers with a levitation winding to satisfy their functions as an element of the general circuit of the device: dependence of the voltage increment at the excitation winding terminals on mains voltage fluctuations; dependence of the maximum stroke of the LW on the voltage increments (supply winding) of the EW; dependence of the course of the LW, input, output and overall powers on the initial data for design; dependence of the load current on the ambient temperature and the temperature rise of the windings; dependence of the main dimensions on power, electromagnetic load and winding overheating temperature; dependence of the increment of induction in the core on fluctuations in the mains voltage, load power and rated power of the stabilizer [9].

 

Figure 4. Dependence of the weight force Рв on the current I1

 

The main criteria for designing a current stabilizer are: allowable overheating τ, allowable voltage drop U1, allowable stroke XM of the levitation winding, allowable ratio of the height of the windings (or magnetic circuit) to their thickness (or width of the magnetic circuit) and the accuracy of current stabilization for a given range of changes in mains voltage  ΔU = Umax-Umin. As a generalized model, the design of a stabilizer with maximum symmetry and homogeneity of the magnetic system is considered [7-8].

For this purpose, a mathematical model has been developed that allows, on the basis of solving the equations of the levitation coordinate, mechanical forces, winding MMF and winding excess temperature, to establish the most important analytical relationships between the initial design data and the main parameters of the stabilizer [8-10]. The developed technique was used for a three-limit stabilizer for stands and galvanic baths as an adjustable source of stabilized current at 7,8,9 A. The current stabilization error of the prototype current stabilizer was 0.1% when the mains voltage fluctuated in the range (160-250) V.

Conclusion

Analytical expressions for a number of basic dependencies are obtained that characterize the ability of AC stabilizers based on the principle of induction levitation. A calculation of a three-section AC stabilizer for powering galvanic baths was made, a method for calculating a current stabilizer for testing equipment and galvanic baths was given, a computer study of the current stabilizer coupling equation using the program (EXEL) was carried out.

The current states of power sources for galvanic baths are analyzed. The features of operation and varieties of electroplating baths, their fields of application are considered, the requirements for modeling the optimal temperature control of electroplating baths are established.     

 

References:

  1. Abdullayev Ya.R., Kerimzade G.S." Design of EA with induction levitation elements. //Elektrotexnika . Moscow, №5. 2015.рр.16-22.
  2. Abdullayev Ya.R., Kerimzade G.S., Mamedova G.V." Electrical and electronic apparatus " .Textbook. Baku. ASOIU. 2019. 170p.
  3. Kerimzade G.S., Mutallimov M.F. " Development of a current stabilizer control system ". // Scientific and technical journal "Problems of Energy".Baku. 2020. №3 рр.59-64.
  4. Kerimzade G.S." Features of the current stabilizer control system". // 6th İnternational Artificial İntelligence & Data Processing  Sympozium,08-09 September, Malatiya, 2022.рр.194-199.
  5. Kerimzade G.S. Analytical connections of the parameters and sizes of the presizion stabilizer of alternating current using the effect of inducial levitation.// İJ TPE Journal.September.2022. № 3.рр.175.184.
  6. Kerimzade G.S." Characteristics of the current stabilizer control system. // International scientific and technical conference "Modern problems of the electric power industry and development prospects". Baku, Azerbaijan, Azerbaijan State Maritime Academy, november,17-18. 2022.
  7. Kerimzade G.S. Analysis of the methodology for calculation current stabilizer with induction levitation.// İJ TPE Journal.Dezember.2022. № 4.рр.170-174.
  8. Kerimzade G.S., Mamedova G.V. Analysis of EA parameters with LE. // Priborostroeniye.-Sankt Peterburq, 2018. № 12 (61).рр.67-71.
  9. Кerimzade G.S. Indicators of parametrs when designing electrical apparatus with levitation elements. // News of Azerbaijan High Technical Edicational Institutions. Volume 24. ISSUE 1 (135).2022. ISSN: 1609-1620. рp.39 – 43.
  10. Piriyeva N.M. Оptimization of the parameters of the induction levitator.// News of Azerbaijan High Technical Edicational Institutions.ISSUE 1.2021.pp.35-41.
Информация об авторах

Candidate of Technical Sciences, Associate Professor, Azerbaijan State Oil and Industry University, Azerbaijan, Baku

канд. техн. наук, доц., Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджан, г. Баку

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top