ASSESSMENT OF THE TECHNICAL CONDITION OF POWER PLANTS OF DIESEL LOCOMOTIVES USING THE HARDWARE AND SOFTWARE COMPLEX “BORT”

ОЦЕНКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭНЕРГЕТИЧЕСКИХ СИЛОВЫХ УСТАНОВОК ТЕПЛОВОЗОВ С ИСПОЛЬЗОВАНИЕМ АППАРАТНО-ПРОГРАММНОГО КОМПЛЕКСА «БОРТ»
Norbo‘tayeva M.
Цитировать:
Norbo‘tayeva M. ASSESSMENT OF THE TECHNICAL CONDITION OF POWER PLANTS OF DIESEL LOCOMOTIVES USING THE HARDWARE AND SOFTWARE COMPLEX “BORT” // Universum: технические науки : электрон. научн. журн. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/15047 (дата обращения: 22.12.2024).
Прочитать статью:

 

ABSTRACT

The article presents a description of the devices and structure of the organization of monitoring the technical condition of a diesel generator set (DGU) of diesel locomotives, as well as the expediency of proactive diagnostics, which allows early detection of defects at the earliest stage of their development. The main functions of the hardware-software complex “Bort” are given. A description of the diesel locomotives that occur during the operation of a diesel generator plant (DGP) during operation is also presented. The analysis of modes of continuous monitoring of the technical condition of a diesel generator plant (DGP) was carried out.

АННОТАЦИЯ

 В статье представлено описание об устройствах и структуре организации контроля технического состояния дизель-генераторной установки (ДГУ) тепловозов, а также обоснована целесообразность упреждающей диагностики, которая позволяет заблаговременно выявить дефекты на самой ранней стадии их развития. Приведены основные функции аппаратно-программного комплекса «Борт». Также представлено описание происходящих в процессе работы дизель-генераторной установки (ДГУ) тепловозов, при эксплуатации. Проведен анализ режимов непрерывного контроля технического состояния дизель-генераторной установки (ДГУ).

 

Keywords: diagnostics, diesel generator plant (DGP), modern methods, neural network module, locomotive.

Ключевые слова: диагностика, дизель-генераторная установка (ДГУ), современные методы, нейросетевой модул, локомотив.

 

Introduction. Improving the efficiency and reliability of locomotives requires regular monitoring of their equipment during operation. With the introduction of modern microprocessor systems of on-board automation and control, not only the implementation of an alarm system during critical operation of equipment, but also effective methods of processing the obtained measurement data, providing reliable prediction of changes in the technical condition of key equipment components, the issue of development is still relevant [1].

A modern locomotive is a technically complex, renewable system, therefore its successful operation depends on the implementation of a certain set of preventive and restorative measures aimed at maintaining and restoring the working condition, the working condition and the identified resource.

One of the main directions is to increase the operational reliability, resource and technical and economic indicators of locomotives, increase the efficiency of the locomotive economy and reduce the operating costs of railways. This problem cannot be solved without the introduction of modern locomotive maintenance systems based on taking into account their actual technical condition when planning locomotive repair volumes. Technical diagnostic tools are a reliable source of information about the technical condition of operating locomotive systems[2].

Improving the operational reliability, resource and technical and economic indicators of diesel locomotives is one of the main directions of increasing the efficiency of the locomotive economy and reducing the operating costs of railways [3]. The solution to this problem is impossible without the introduction of modern locomotive maintenance systems based on taking into account their actual technical condition when planning the volume of repairs [4-6]. In recent years, considerable attention has been paid to the introduction of diagnostic tools and equipment during operation. To date, the main efforts are aimed at the development and implementation of such high-tech devices in enterprises and facilities of the railways of the CIS countries [7].

Unfortunately, early experience in the operation of such technologies shows that the expected significant reduction in the cost of maintenance and repair of locomotives is not always achieved due to the significant time spent on preparation and diagnostics, which in many cases are comparable to the time required to replace the corresponding units [8]. Under these conditions, it is usually impossible to perform regular periodic diagnostics of the locomotive, which is necessary for a reliable assessment of its current technical condition.

The main tasks of diagnostics of rolling stock are to determine the current state and predict changes in the technical condition of locomotives depending on the operating time [9]. To solve these problems, models can be used that differ in methods of construction and application, using artificial networks (IS) to assess the technical condition of modern rolling stock. An innovation in the locomotive industry is the hardware and software complex “Bort” designed to monitor the thermal condition of diesel generator sets of locomotives and fuel consumption [10].

The hardware and software complex “Bort” has such basic components as (Fig.1):

  • Main display module
  • Additional display module
  • Network Router
  • Secure Calculator module

 

Figure 1. The main components of the hardware and software complex “Bort”

 

The above components, together with the on-board neuromodule, provide the locomotive with auto guidance, video surveillance, an automatic driver vigilance system and radio equipment. In turn, the onboard neuromodule has such key functions as (Fig. 2):

  • Driver vigilance control
  • Recognition of the driver's actions based on the analysis of a minimalistic human skeleton
  • Marking of the driver's work shift for display at the customer's workplaces
  • Easy integration with the existing locomotive video registration system
  • The possibility of implementing other video analytics tasks for the technological requirements of the customer [11]

 

Figure 2. Example of the neural network algorithm in the task: Driver vigilance control

 

The data about the locomotive is combined on the monitor of the interface of the hardware and software complex “Bort”. With the help of data on the monitor, you can find out in time about the reception of ALSN signals, determining the speed and location of the locomotive, about the need to apply emergency braking, about registering data inside the cab and along the way, as well as overlaying data on speed, coordinates. In addition, it is possible to introduce energy-optimal driving of the train in automatic mode and the adviser mode modeled using artificial intelligence. An algorithm for assessing the technical condition of diesel generator sets (DGS) of diesel locomotives using the hardware and software complex “Bort” (Fig.3).

 

Figure 3. Algorithm for assessing the technical condition of diesel generator sets (DGS) of diesel locomotives using the hardware and software complex “Bort”

 

As can be seen, the onboard hardware and software complex “Bort” (APC “Bort”) registers and analyzes the parameters of operation and accounting of diesel fuel during the operation of locomotives, in addition, it continuously monitors the technical condition and operating modes of diesel generator sets of locomotives. Fuel is the main source of autonomous locomotives and for this automatic fuel accounting is an important aspect during operation. With the help of the hardware and software complex, automatic control of the arrival and consumption of fuel during the operation of the locomotive is performed and the determination of its unauthorized drains and transmission of registered data using a wireless channel (online mode) and a backup wired channel.

In addition, the complex provides:

  • determination of the volume of fuel in the tank on the left and right side, l;
  • calculation of the average fuel volume, l;
  • calculation of the mass of fuel in the tank, kg;
  • measurement of fuel temperature, ° C;
  • determination of fuel density in the tank, kg/m3;
  • determination of the presence of raw water in the fuel tank;
  • recording of parameters on a time scale in a non-volatile memory device (locomotive status map and the driver's personal card).
  • determination of the speed of the locomotive, km/h;
  • determination of coordinates on the ground;  
  • transmission of accumulated data via GPRS radio channel to an FTP server;
  • creation of a statistical base for the formation of a system of objective information on fuel consumption for train traction;
  • self-diagnosis of the status of sensors and modules of the system [12-15].

Conclusion

Thus, it is shown that the control and diagnostics of diesel generator sets (DGS) of diesel locomotives is one of the key aspects. Timely diagnostics of the diesel generator set (DGU) ensures traffic safety and reduces fuel consumption. For accuracy, the use of high-tech and high-tech technologies is a powerful and affordable tool that can give reliable results in the technical diagnostics of a diesel generator set (DGU). With the use of the Bort hardware and software complex, it is possible to increase the efficiency and reliability of locomotives. With the help of the onboard hardware and software complex “Bort” (APC “Bort”), it is possible to register and analyze the parameters of operation and accounting of diesel fuel during the operation of locomotives, in addition, it is possible to continuously monitor the technical condition and operating modes of diesel generator sets of locomotives.

 

References:

  1. Абдулазиз Ю.М. и др. Прогнозирование технического состояния дизель-генераторной установки (дгу) тепловозов с помошью аппаратно-программного комплекса «БОРТ» //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 9. – С. 573-579.
  2. Хамидов О. Р. и др. Оценка технического состояния дизель-генераторной установки (дгу) тепловозов с помощью аппаратно-программного комплекса «БОРТ» //Universum: технические науки. – 2022. – №. 4-5 (97). – С. 41-46.
  3. Yusufov A. M. et al. Lokomotivlarning texnik holatini bort tizimi yordamida aniqlash //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 9. – С. 600-605.
  4. Khamidov O. et al. Evaluation of the technical condition of locomotives using modern methods and tools //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 365. – С. 05004.
  5. Khamidov O. et al. Remaining life of main frame and extension of service life of shunting Locomotives on railways of Republic of Uzbekistan //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 365. – С. 05008.
  6. Yusufov A. M. “O‘zbekiston temir yo‘llari” AJ lokomotiv parki tahlili //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 11. – С. 251-258.
  7. Yusufov A. O‘zbekiston respublikasi temir yo ‘llaridagi manevr lokomotivlarini tahlili va rivojlanish istiqbollari //Science and innovation. – 2022. – Т. 1. – №. A8. – С. 943-950.
  8. Хамидов О.Р. и др. Продлению остаточного ресурса главной рамы тепловоза серии ТЭМ2 с методом конечных элементов (МКЭ) // Инновационные подходы, проблемы, предложения и решения в науке и образовании. – 2022. – Т. 1. – №. 1. – С. 148-153.
  9. Хамидов О. Р. и др. Оценка остаточного ресурса главных рам маневровых тепловозов //Universum: технические науки. – 2022. – №. 2-3 (95). – С. 59-62.
  10. Хамидов О. Р. и др. Прогнозирование остаточного ресурса главной рамы и продление сроков службы маневровых локомотивов на АО “УТЙ” // Universum: технические науки. – 2022. – №. 4-5 (97). – С. 47-54.
  11. Хамидов О.Р. и др. Виды повреждений несущих конструкций и технологические аспекты их возникновения //Инновационные подходы, проблемы, предложения и решения в науке и образовании. – 2022. – Т. 1. – №. 1. – С. 142-147.
  12. Yusufov A. M.et al. Temir yo‘l tortuv harakat tarkibi issiqlik kuch qurilmalarini avtomatik boshqarish va diagnostika tizimi //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 9. – С. 613-618.
  13. Хамидов О. Р. и др. Оценка средних напряжений цикла в несущих рамах тепловозов на основе, конечно-элементного, расчета от статических нагрузок //Academic research in modern science. – 2022. – Т. 1. – №. 9. – С. 118-124.
  14. Грачев В. В., Валиев М. Ш. Оценка технического состояния тепловозного дизеля по данным бортовой микропроцессорной системы управления // Известия Петербургского университета путей сообщения. – 2010. – №. 1. – С. 23-34.
  15. Кодиров Н. С. и др. Разработка метода для определения динамической нагруженности узлов подвижного состава с применением неразрушающего контроля //Приборы и методы измерений, контроля качества и диагностики в промышленности и на транспорте. – 2022. – С. 98-105.
Информация об авторах

Assistant Loсomotives and locomotive economy Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

ассистент кафедры «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top