ANALYSIS OF THE STRESSES RESULTING FROM VERTICAL AND HORIZONTAL FORCES ACTING ON THE WHEEL IN SOLIDWORKS SOFTWARE

АНАЛИЗ НАПРЯЖЕНИЙ ОТ ВЕРТИКАЛЬНЫХ И ГОРИЗОНТАЛЬНЫХ СИЛ, ДЕЙСТВУЮЩИХ НА КОЛЕСО, В ПРОГРАММЕ SOLIDWORKS
Цитировать:
ANALYSIS OF THE STRESSES RESULTING FROM VERTICAL AND HORIZONTAL FORCES ACTING ON THE WHEEL IN SOLIDWORKS SOFTWARE // Universum: технические науки : электрон. научн. журн. Shokuchkorov K. [и др.]. 2023. 2(107). URL: https://7universum.com/ru/tech/archive/item/14996 (дата обращения: 21.11.2024).
Прочитать статью:

 

ABSTRACT

In this article, the formulas were used to calculate the vertical and horizontal forces acting on the wheel of a freight car. Using the Solidworks program, a 3D wheel model was built according to GOST 10791-2011, the forces calculated from the modeling section were applied to the rolling surface, and the results were entered in the table. During the service life of the wheel, it is rotated 5 times according to the calculated rate, and with each revolution, the stress value in the calculated field changes.

АННОТАЦИЯ

В данной статье по формулам рассчитывались вертикальные и горизонтальные силы, действующие на колесо грузового вагона. С помощью программы Solidworks была построена 3D-модель колеса по ГОСТ 10791-2011, силы, рассчитанные по разделу моделирования, были нанесены на поверхность качения, а результаты занесены в таблицу. В течение срока службы колеса его проворачивают 5 раз по расчетной норме, и при каждом обороте значение напряжений в расчетном поле меняется.

 

Keywords: tread surface, slider, uneven rolling, wheel.

Ключевые слова: поверхность катания, ползун, неравномерный прокат, колесо.

 

Introduction

The wheel is affected by vertical and horizontal forces (Fig. 1), and these forces are divided into static and dynamic types. When finding these forces, the loaded or unloaded condition of the wagon is taken into account [1]. The calculation drawing below shows the cross section of the wheel and the direction of the forces falling on the rolling surface and its linear dimensions. As we all know that there are many types of drivetrain wheel disc, in this work we will only do the calculations by putting the force values ​​according to the calculation diagram below for flat disc all-round wheel. The value of forces is calculated using the formulas of table 1 given in the norm.

 

.

Figure 1. Design scheme of a wheel from the Standards for the calculation and design of wagons

 

This drawing shows the vertical P and horizontal Q forces on the wheel, its linear dimensions and the calculation zone. The forces acting on the wheel vary in different values ​​depending on the defects of its rolling surface. When we find the forces, we consider 3 types of failure states of the wheel rolling surface: non-defective, slippery and uneven rolling. The value of the forces acting in the case of this failure is calculated using the formulas presented in Table 1 below [2].

When we calculate the forces acting on the wheel, we consider the weight of the axle as 23.5 tons[3].

Table 1.

Formulas for determining the parameters of the load distributions acting on the wheel

Wheel rolling surface condition

Formulas for determining

mathematical expectation

root-mean-square deviation

Vertical load

Without defects

𝑃̅1=0,621 P

 

Slider

𝑃̅2=0,856 P

 

Uneven rental

𝑃̅3=0,533+14,252·102·v·m1/2

𝑃̅p3=5,915·102·v·m1/2

Horizontal load

Regardless of the state

𝑄=3,78·10-3·υ·P

= 2,457·10-3υ·P

* note: vertical static loads from the wheelset on the rails, kN

P=Po= 230 – laden

P=Pn= 60 – empty

m = 1797 kg – mass of unsprung parts per wheel pair;

υ = 25 m/s (90 mm(h)) – design speed.

 

Using the formulas presented in the table, the values ​​of the vertical and horizontal forces acting from the wheel to the rail were calculated for the loaded and unloaded condition of the wagon.

These calculated forces are based on GOST 10791-2011 in Solidworks was placed on the rolling surface of the drawn wheel using the simulation section (Fig. 2) and the stress values ​​in the calculated zone were obtained.

 

Figure 2. The stress state of a wheel with a tapered disc with a minimum rim thickness and uneven rolling

 

 The stress value generated by each force application was depicted in this form and the average value was taken and transferred to Table 2. The thickness of the spare part of the rolling stock wheel is directed 5 times during the average service life, depending on the types and sizes of faults in it [4]. After each direction, the value of the voltage in the calculation zone increases.

Table 2.

Mises stresses in the design zone of the wheel arising during the service life

j

Wagon condition

Active loads

Proportion of wheel movement, λ

Average von Mises stress in the calculated zone of the wheel at n turning, MРа:

n = 0

n = 1

n = 2

n=3

n=4

1

laden

Р1=142,83 kN

0,2514

45

50

55

57

60

2

Р2=196,88 kN

0,045

55

60

65

72

77

3

Р3=273,8 kN

0,0036

75

85

90

100

110

4

empty

Р1=37,26 kN

0,1676

10

11

12

15

16

5

Р2=51,36 kN

0,03

15

18

19

21

22

6

Р3=182,7 kN

0,0024

50

55

60

70

75

7

laden

Р1 =142,83 kN Q=21,7 kN

0,2514

48

53

60

64

59

8

Р2 =196,88 kN Q=21,7 kN

0,045

60

70

78

82

92

9

Р3=273,8 kN Q=21,7 kN

0,0036

80

90

100

110

120

10

empty

Р1 =37,26 kN Q=5,67 kN

0,1676

10

12

15

17

18

11

Р2=51,36 kN Q=5,67 kN

0,03

15

19

21

22

24

12

Р3=182,7 kN Q=5,67 kN

0,0024

55

60

67

73

76

 

The Mises stress in the calculation area was obtained as a result of applying the forces when the wheel is directed to the minimum limit according to GOST and the change of forces.

When the wheel is loaded without a defect, only the vertical force is calculated, a force of 142.8 kN acts on it, and the stress change in the calculated field under the influence of this force was prepared using the results obtained from the Solidworks/simulation program.

 

Figure 3. Wheel subjected to a vertical force of 142.8 kN on the wheel voltage change in the calculation zone

 

These values ​​increased due to the reduction of the thickness of the wheel rim as a result of turning, and the highest value was observed when the wheel was loaded and rolled unevenly.

 

References:

  1. Norms for the design and calculation of railway cars with a gauge of 1520 mm of the CIS countries.- 1996.-S. 289-292.
  2. Y.O. Ruzmetov, K.S. Shokuchkorov, In Vol. 1 No. 6 (2021): Journal of Advanced Research and Stability.
  3. Yakushev A.V. The results of calculating the safety factor of the Conical Disc Wheel of the freight car using Mathcad Science. - 2014. No. 5. - S.1-11.
  4. Shokuchkorov K., Ruzmetov Y., Raximov R., Yoldoshov R. Analysis method for assessing the strength of freight wagon wheels: international conference on advance research in humanities, applied sciences and education.
  5. Abduvakhobov M.E. & Gultoraev S.M. (2018). Traction qualities of the railway section kattakurgan-navoi with diesel traction. In Smart Energy in Transport and Industry (pp. 191-196).
  6. Kurbonnazar Sh., Yadgor R., Rustam R. and Rustam Y. (2022). Method of analysis for assessing the strength of wheels of freight cars. Conference, 171-182.
Информация об авторах

Assistant, Department of wagons and wagon economy, Tashkent state transport university, Republic of Uzbekistan, Tashkent

ассистент, кафедра вагоны и вагонное хозяйства, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences, Professor, Department of wagons and wagon economy, Tashkent state transport university, Republic of Uzbekistan, Tashkent

д-р техн. наук, профессор, кафедра вагоны и вагонное хозяйства, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Ph.D., Associate Professor, Department of wagons and wagon economy, Tashkent state transport university, Republic of Uzbekistan, Tashkent

канд. техн. наук, доцент, кафедра вагоны и вагонное хозяйства, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Ph.D., Associate Professor, Department of wagons and wagon economy, Tashkent state transport university, Republic of Uzbekistan, Tashkent

канд. техн. наук, доцент, кафедра вагоны и вагонное хозяйства, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Assistant Department of wagons and wagon economy, Tashkent state transport university, Republic of Uzbekistan, Tashkent

ассистент, кафедра вагоны и вагонное хозяйства, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top