KINETICS OF INTERACTION OF HARD ALLOYS Zn22Al-Tl SYSTEM WITH OXYGEN IN THE GAS PHASE

КИНЕТИКА ВЗАИМОДЕЙСТВИЯ ТВЕРДЫХ СПЛАВОВ СИСТЕМЫ Zn22Al-Tl С КИСЛОРОДОМ ГАЗОВОЙ ФАЗЫ
Sharipov J.H.
Цитировать:
Sharipov J.H. KINETICS OF INTERACTION OF HARD ALLOYS Zn22Al-Tl SYSTEM WITH OXYGEN IN THE GAS PHASE // Universum: технические науки : электрон. научн. журн. 2022. 12(105). URL: https://7universum.com/ru/tech/archive/item/14777 (дата обращения: 18.11.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2022.105.12.14777

 

ABSTRACT

The article presents the results of a thermogravimetrical research of the kinetics of the interaction of Zn22Al hard alloy containing thallium with gas phase oxygen.

АННОТАЦИЯ

В статье приведены результаты термогравиметрического исследования кинетики взаимодействия твердого сплава Zn22Al, содержащего таллия с кислородом газовой фазы.

 

Keywords: Zn22Al alloy, thallium, thermogravimetrical method, activation energy, alloys oxidation.

Ключевые слова: сплав Zn22Al, таллий, термогравиметрический метод, энергия активации, окисление сплавов.

 

During the development of industrial production [1–3], the introduction of new technologies and the increasing requirements for durability and reliability of corrosion-resistant and structural materials [4–10], it is necessary to pay special attention to the application and optimization of alloy production processes [11–14]. In connection with the expansion of the areas of application of zinc and aluminum and its alloys [15–20], previously little-studied alloying metals are involved in the practice of synthesizing new materials [24–26], which include rare earth metals, which have a number of unique properties [27–31].  

The process of oxidation of the Zn22Al alloy containing 1.0% thallium proceeds intensively at the initial stage due to the absence of an oxide film at the reaction surface. This is evidenced by the calculated values of the oxidation rate, which are given in table 1.

Table 1.

Kinetic and energy parameters of the oxidation system Zn22Al-Tl alloys

Content Tl

in the alloy, wt%

Oxidation temperature,

К

Oxidation

rate К.104,

kg · m-2 . s-1

Activation energy

of oxidation,

kJ/mole

 

-

473

3.12

 

 151.2

523

3.56

623

3.91

 

0.01

473

2.18

 

176.4

523

2.48

623

2.73

 

0.1

473

2.05

 

178.3

523

2.24

623

2.56

 

0.5

473

2.21

 

174.5

523

2.57

623

2.84

 

1.0

473

2.41

 

 171.8

523

2.81

623

3.00

 

With the introduction of 0.1% thallium in the Zn22Al alloy, that is, as a result of the formation of an oxide film, the further course of the process slows down, since the reaction area decreases. In this case, apparently, the formed film is sufficiently dense and excludes the access of oxygen (Table 1).

The process of oxide formation at the surface of alloys is complex and multifactorial. The rate of the process depends on the activity of the initial components, the products of their interaction, and external factors. The possibilities of the process and the formation of various oxidation products are determined by the thermodynamic characteristics of the components of the systems under consideration. The high values of the Gibbs energy, the enthalpy of formation, and the chemical potential of the oxides of these metals contribute to the proposed mechanism of the oxidation of these alloys.

From the slope of the straight line of the dependence of the oxidation rate of Zn22Al alloys with different thallium contents on the reciprocal temperature, their effective activation energy of oxidation was calculated, which is 151.2, 176.4, 177.6, 178.3, 174.5 and 171.8 kJ/mol. An increase in the thallium content above 0.5% promotes an increase in the oxidation rate of the Zn22Al alloy, which is accompanied by a decrease in the activation energy (Figure 1).

 

Figure 1. Isochronous of the oxidation (523 K) system Zn22Al-Tl alloys

 

References:

  1. Кеchin V.А., Lyblinskii Е.Ya. Zinc alloys. – Мoscow: Metallurgy, 1986. – 247 p. [In Russian].
  2. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 1. Zn and 5% Al-Zn coatings. Corrosion. 1991. Vol. 47. N 4. P. 9–13.
  3. Obidov Z.R., Ganiev I.N., Amonov I.T., Ganieva N.I. Corrosion of Al+2.18% Fe Alloy Doped with Gallium. Protection of Metals and Physical Chemistry of Surfaces. 2011. V. 47. N 5. P. 654–657. DOI: 10/1134/S2070205111050133
  4. Obidov Z.R., Ganiev I.N., Eshov B.B., Amonov I.T. Corrosion-Electrochemical and Physicochemical Properties of Al+2.18% Fe Alloy Alloyed with Indium. Russian Journal of Applied Chemistry. 2010. V. 83. N 2. P. 263–266.
  5. Обидов З.Р. Анодное поведение и окисление сплавов Zn5Al и Zn55Al,       легированных барием // Известия СПбГТИ (ТУ). 2015. № 31(57). С. 51-54.
  6. Obidov Z.R., Ganiev I.N. Anodic Behavior and Oxidation of the Thallium Alloyed Al+2.18% Fe Alloy. Russian Journal of Applied Chemistry. 2012. V. 85. N 11. P. 1691–1694. DOI: 10.1134/S1070427212110230
  7. Obidov Z.R., Amini R., Nazarov O.N., Dzhayloev J.Kh. and all. High temperature and electrochemical corrosion of Zn0.5Al alloy doped with calcium in various media. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020. V. 63. N 11. P. 20–26.
  8. Amini R.N., Obidov Z.R., Ganiev I.N., Mohamad R.B. Potentiodynamical Research of Zn-Al-Mg Alloy System in the Neutral Ambience of NaCl Electrolyte and Influence of Mg on the Structure. Journal of Surface Engineered Materials and Advanced Technology. 2012. N 2. P. 110–114. DOI: 10.4236/jsemat.2012.22017
  9. Khakimov I.B., Rakhimov F.А., Ganiev I.N., Obidov Z.R. Oxidation kinetic and anodic behavior of Zn22Al alloy doped with nickel. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2021. V. 64. N 6. P. 35–40.
  10. Обидов З.Р. Теплофизические свойства и термодинамические функции сплава Zn55Al, легированного бериллием, магнием и празеодимом // Теплофизика высоких температур. 2017. Т. 55. № 1. С. 146-149.
  11. Amini R.N., Irani M., Ganiev I., Obidov Z.R. Galfan I and Galfan II Doped with Calcium, Corrosion Resistant Alloys. Oriental Journal оf Chemistry. 2014. V. 30. N 3.  P. 969–973. DOI: http://dx.doi.org/10.13005/ojc/300307
  12. Safarova F.R., Obidov Z.R., Strucheva N.Е., Ganiev I.N., Novodzhenov V.А. High-temperature Oxidation of gallium-doped Zn5Al alloy with gaseous oxygen. Polzunovskii vestnik. 2019. N 3. P. 112–116. (In Russian)
  13. Обидов З.Р. Влияние рН среды на анодное поведение сплава Zn55Al,       легированного бериллием и магнием // Журнал прикладной химии. 2015. Т. 88. № 9. С. 1306-1312.
  14. Obidov Z.R. Effect of pH on the Anodic Behavior of Beryllium and Magnesium Doped Alloy Zn55Al. Russian Journal of Applied Chemistry. 2015. V. 88. N 9. P. 1451–1457. DOI: 10.1134/S1070427215090116
  15. Amini R.N., Obidov Z.R., Ganiev I.N., Mohamad R. Anodic Behavior of Zn-Al-Be Alloys in the NaCl Solution and the Influence of Be on Structure. Journal of Surface Engineered Materials and Advanced Technology. 2012. N 2. P. 127–131. DOI: 10.4236/jsemat.2012.22020
  16. Одинаева Н.Б., Ганиев И.Н., Обидов З.Р., Амини Р.Н. Потенциодинамическое исследование сплава Zn+0.5% Al, легированного таллием // Доклады АН Республики Таджикистан. 2014. Т. 57. № 8. С. 686-689.
  17. Obidov Z.R., Amonova A.V., Ganiev I.N. Influence of the pH of the Medium on the Anodic Behavior of Scandium – Doped Zn55Al Alloy. Russian Journal of Non-Ferrous Metals. 2013. V. 54. N 3. P. 234–238.
  18. Obidov Z.R., Ganiev I.N., Aliev D.N., Ganieva N.I. Anodic Behavior of Zn5Al and Zn55Al Alloys Alloyed with Calcium in NaCl Solutions. Russian Journal of Applied Chemistry. 2010. V. 83. N 6. P. 1015–1018.
  19. Obidov Z.R. Anodic Behavior and Oxidation of Strontium – Doped Zn5Al and Zn55Al Alloys. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. N 3. Р. 352–355. DOI: 10.1134/S2070205112030136
  20. Одинаева Н.Б., Сафарова Ф.Р., Ганиев И.Н., Обидов З.Р. Анодное поведение сплава Zn+0.5% Al, легированного индием, в среде электролита NaCl // Вестник Таджикского технического университета. 2014. № 4 (28). С. 73-76.
  21. Obidov Z.R., Amonova A.V., Ganiev I.N. Effect of Scandium Doping on the Oxidation Resistance of Zn5Al and Zn55Al Alloys. Russian Journal of Physical Chemistry A. 2013. V. 87. N 4. P. 702–703. DOI: 10.1134/S0036024413040201
  22. Обидов З.Р., Ганиев И.Н. Анодное поведение и окисление сплава Al+2.18% Fe, легированного таллием // Журнал прикладной химии. 2012. Т. 85. № 11. С. 1781-1784.
  23. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 2. 55% Al-Zn coatings. Corrosion. 1991. Vol. 47. N 4. P. 17–30.
  24. Оbidov Z.R., Ganiev I.N. Anode protective of zinc-aluminium covering with II group elements. Berlin: LAP LAMBERT Acad. Publ. 2012. 288 p. (In Germany)
  25. Обидов З.Р. Анодное поведение и окисление сплавов Zn5Al, Zn55Al, легированных стронцием // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 3. С. 305-308.
  26. Reza A., Razazi M., Nizomov Z., Ganiev I.N., Obidov Z.R. Temperature dependence of thermodynamic properties of Zn-5Al and Zn-55Al alloys with magnesium // Oriental Journal of Chemistry. 2012. Vol. 28, No. 2. P. 841-846.
  27. Обидов З.Р. Влияние рН среды на анодное поведение сплава Zn5Al, легированного бериллием и магнием // Известия СПбГТИ(ТУ). 2015. № 32(58). С. 52-55.
  28. Obidov, Z.R. Thermophysical Properties and Thermodynamic Functions of the Beryllium, Magnesium and Praseodymium Alloyed Zn-55Al Alloy. High Temperature. 2017. V. 55. N 1. P. 150–153. DOI: 10.1134/S0018151X17010163
  29. Оbidov Z.R., Ganiev I.N. Physicochemical of zinc-aluminium alloys with rare-earth metals. Dushanbe: ООО «Аndaleb-R». 2015. 334 p. (In Tajikistan)
  30. Vasil’ev, E.K., Nazmansov, M.S. Qualitative X-ray structural analysis. Novosibirsk: Science. 1986. 200 p. (In Russian)
  31. Lepinskikh B.M., Kitashev A.A., Belousov A.A. Oxidation of liquid metals and alloys. – Мoscow: Science, 1979. – 116 p. [In Russian].
Информация об авторах

Applicant, Khujand National University, Republic of Tajikistan, Khujand

соискатель, Худжандский государственный университет им. акад. Б. Гафурова, Республика Таджикистан, г. Худжанд

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top