Applicant, Khujand National University, Republic of Tajikistan, Khujand
KINETICS OF INTERACTION OF HARD ALLOYS Zn22Al-Er SYSTEM WITH OXYGEN IN THE GAS PHASE
ABSTRACT
The article presents the results of a thermogravimetrical research of the kinetics of the interaction of the Zn22Al hard alloy containing erbium with gas phase oxygen.
АННОТАЦИЯ
В статье приведены результаты термогравиметрического исследования кинетики взаимодействия твердого сплава Zn22Al, содержащего эрбия с кислородом газовой фазы.
Keywords: Zn22Al alloy, thermogravimetrical method, erbium, alloys oxidation, activation energy.
Ключевые слова: сплав Zn22Al, термогравиметрический метод, эрбий, окисление сплавов, энергия активации.
Zinc alloys with aluminum are very widely used in industry as anodizing coatings for the protection of steel parts [1–3]
Thermogravimetrical methods for studying the process of oxidation of metal
alloys were carried out in the solid state according to the described method [4–6]. Oxidation of alloys of a certain size is carried out with atmospheric oxygen in shaft furnaces [8–10]. The kinetic and energy parameters of the oxidation process were determined from the change in the mass of the sample with time [11–15]. The rate of the oxidation process of alloys is determined by the tangents drawn to several points of the oxidation curves [16–18]. The effective activation energy of the alloys was calculated from the slope of the lgK-1/T dependence [19–28].
The oxidation of the Zn22Al alloy modified with erbium was studied by the thermogravimetrical method [29–31] at 473K, 523K, and 623K. From the curves of the oxidation process for this alloy, it can be seen that with increasing temperature, the oxidation rate increases. At the initial stages of the oxidation process of the Zn22Al alloy, an oxide film is formed, which, apparently, does not have sufficient protective properties, as evidenced by an increase in the oxidation rate. When erbium is added, the curves become constant, that is, a thick protective oxide film is formed on the surface of the alloys. An alloy containing 0.01 wt.% erbium is characterized by a lower oxidizability compared to the original alloy (Figure 1).
It can be seen that with an increase in the concentration of erbium in the alloy, the rate of its oxidation increases, both with a 10-minute exposure of the alloys and with a 20-minute exposure in an oxidizing atmosphere (Figure 1). This is evidenced by a decrease in the effective activation energy with an increase in the scandium concentration in the alloy. This pattern is most clearly manifested at 523K (Table 1).
Figure 1. Kinetic curves of oxidation alloy Zn22Al-0.01Er at Т = 473 (1), 523 (2) and 623 К (3)
As the temperature increases, the rate of oxidation of the alloy increases. The reverse pattern is observed with an increase in the concentration of the modified component - erbium up to 1.0 wt%. An increase in the oxidation rate is accompanied by a decrease in the effective activation energy (table 1). The decrease in the rate of oxidation of alloys modified with erbium is associated with the formation of oxide films of a complex composition with good protective characteristics on their surface.
Table 1.
Kinetic and energy parameters of the oxidation system Zn22Al-Er alloys
Content Er шn the alloy, wt% |
Oxidation temperature, К |
True oxidation rate К.104, kg · m-2 . s-1 |
Effective activation energy of oxidation, kJ/mole |
0.0 |
473 |
3.12 |
151.2 |
523 |
3.56 |
||
623 |
3.91 |
||
0.01 |
473 |
2.51 |
170.0 |
523 |
2.62 |
||
623 |
2.96 |
||
0.05 |
473 |
2.59 |
168.8 |
523 |
2.70 |
||
623 |
3.06 |
||
0.1 |
473 |
2.77 |
166.3 |
523 |
2.88 |
||
623 |
3.22 |
||
0.5 |
473 |
2.95 |
161.5 |
523 |
3.03 |
||
623 |
3.43 |
||
1.0 |
473 |
3.07 |
160.0
|
523 |
3.25 |
||
623 |
3.60 |
References:
- Кеchin V.А., Lyblinskii Е.Ya. Zinc alloys. – Мoscow: Metallurgy, 1986. – 247 p. [In Russian].
- Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 1. Zn and 5% Al-Zn coatings. Corrosion. 1991. Vol. 47. N 4. P. 9–13.
- Obidov Z.R., Ganiev I.N., Amonov I.T., Ganieva N.I. Corrosion of Al+2.18% Fe Alloy Doped with Gallium. Protection of Metals and Physical Chemistry of Surfaces. 2011. V. 47. N 5. P. 654–657. DOI: 10/1134/S2070205111050133
- Obidov Z.R., Ganiev I.N., Eshov B.B., Amonov I.T. Corrosion-Electrochemical and Physicochemical Properties of Al+2.18% Fe Alloy Alloyed with Indium. Russian Journal of Applied Chemistry. 2010. V. 83. N 2. P. 263–266.
- Обидов З.Р. Анодное поведение и окисление сплавов Zn5Al и Zn55Al, легированных барием // Известия СПбГТИ (ТУ). 2015. № 31(57). С. 51-54.
- Obidov Z.R., Ganiev I.N. Anodic Behavior and Oxidation of the Thallium Alloyed Al+2.18% Fe Alloy. Russian Journal of Applied Chemistry. 2012. V. 85. N 11. P. 1691–1694. DOI: 10.1134/S1070427212110230
- Obidov Z.R., Amini R., Nazarov O.N., Dzhayloev J.Kh. and all. High temperature and electrochemical corrosion of Zn0.5Al alloy doped with calcium in various media. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020. V. 63. N 11. P. 20–26.
- Amini R.N., Obidov Z.R., Ganiev I.N., Mohamad R.B. Potentiodynamical Research of Zn-Al-Mg Alloy System in the Neutral Ambience of NaCl Electrolyte and Influence of Mg on the Structure. Journal of Surface Engineered Materials and Advanced Technology. 2012. N 2. P. 110–114. DOI: 10.4236/jsemat.2012.22017
- Khakimov I.B., Rakhimov F.А., Ganiev I.N., Obidov Z.R. Oxidation kinetic and anodic behavior of Zn22Al alloy doped with nickel. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2021. V. 64. N 6. P. 35–40.
- Обидов З.Р. Теплофизические свойства и термодинамические функции сплава Zn55Al, легированного бериллием, магнием и празеодимом // Теплофизика высоких температур. 2017. Т. 55. № 1. С. 146-149.
- Amini R.N., Irani M., Ganiev I., Obidov Z.R. Galfan I and Galfan II Doped with Calcium, Corrosion Resistant Alloys. Oriental Journal оf Chemistry. 2014. V. 30. N 3. P. 969–973. DOI: http://dx.doi.org/10.13005/ojc/300307
- Safarova F.R., Obidov Z.R., Strucheva N.Е., Ganiev I.N., Novodzhenov V.А. High-temperature Oxidation of gallium-doped Zn5Al alloy with gaseous oxygen. Polzunovskii vestnik. 2019. N 3. P. 112–116. (In Russian)
- Обидов З.Р. Влияние рН среды на анодное поведение сплава Zn55Al, легированного бериллием и магнием // Журнал прикладной химии. 2015. Т. 88. № 9. С. 1306-1312.
- Obidov Z.R. Effect of pH on the Anodic Behavior of Beryllium and Magnesium Doped Alloy Zn55Al. Russian Journal of Applied Chemistry. 2015. V. 88. N 9. P. 1451–1457. DOI: 10.1134/S1070427215090116
- Amini R.N., Obidov Z.R., Ganiev I.N., Mohamad R. Anodic Behavior of Zn-Al-Be Alloys in the NaCl Solution and the Influence of Be on Structure. Journal of Surface Engineered Materials and Advanced Technology. 2012. N 2. P. 127–131. DOI: 10.4236/jsemat.2012.22020
- Одинаева Н.Б., Ганиев И.Н., Обидов З.Р., Амини Р.Н. Потенциодинамическое исследование сплава Zn+0.5% Al, легированного таллием // Доклады АН Республики Таджикистан. 2014. Т. 57. № 8. С. 686-689.
- Obidov Z.R., Amonova A.V., Ganiev I.N. Influence of the pH of the Medium on the Anodic Behavior of Scandium – Doped Zn55Al Alloy. Russian Journal of Non-Ferrous Metals. 2013. V. 54. N 3. P. 234–238.
- Obidov Z.R., Ganiev I.N., Aliev D.N., Ganieva N.I. Anodic Behavior of Zn5Al and Zn55Al Alloys Alloyed with Calcium in NaCl Solutions. Russian Journal of Applied Chemistry. 2010. V. 83. N 6. P. 1015–1018.
- Obidov Z.R. Anodic Behavior and Oxidation of Strontium – Doped Zn5Al and Zn55Al Alloys. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. N 3. Р. 352–355. DOI: 10.1134/S2070205112030136
- Одинаева Н.Б., Сафарова Ф.Р., Ганиев И.Н., Обидов З.Р. Анодное поведение сплава Zn+0.5% Al, легированного индием, в среде электролита NaCl // Вестник Таджикского технического университета. 2014. № 4 (28). С. 73-76.
- Obidov Z.R., Amonova A.V., Ganiev I.N. Effect of Scandium Doping on the Oxidation Resistance of Zn5Al and Zn55Al Alloys. Russian Journal of Physical Chemistry A. 2013. V. 87. N 4. P. 702–703. DOI: 10.1134/S0036024413040201
- Обидов З.Р., Ганиев И.Н. Анодное поведение и окисление сплава Al+2.18% Fe, легированного таллием // Журнал прикладной химии. 2012. Т. 85. № 11. С. 1781-1784.
- Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 2. 55% Al-Zn coatings. Corrosion. 1991. Vol. 47. N 4. P. 17–30.
- Оbidov Z.R., Ganiev I.N. Anode protective of zinc-aluminium covering with II group elements. Berlin: LAP LAMBERT Acad. Publ. 2012. 288 p. (In Germany)
- Обидов З.Р. Анодное поведение и окисление сплавов Zn5Al, Zn55Al, легированных стронцием // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 3. С. 305-308.
- Reza A., Razazi M., Nizomov Z., Ganiev I.N., Obidov Z.R. Temperature dependence of thermodynamic properties of Zn-5Al and Zn-55Al alloys with magnesium // Oriental Journal of Chemistry. 2012. Vol. 28, No. 2. P. 841-846.
- Обидов З.Р. Влияние рН среды на анодное поведение сплава Zn5Al, легированного бериллием и магнием // Известия СПбГТИ(ТУ). 2015. № 32(58). С. 52-55.
- Obidov, Z.R. Thermophysical Properties and Thermodynamic Functions of the Beryllium, Magnesium and Praseodymium Alloyed Zn-55Al Alloy. High Temperature. 2017. V. 55. N 1. P. 150–153. DOI: 10.1134/S0018151X17010163
- Оbidov Z.R., Ganiev I.N. Physicochemical of zinc-aluminium alloys with rare-earth metals. Dushanbe: ООО «Аndaleb-R». 2015. 334 p. (In Tajikistan)
- Vasil’ev, E.K., Nazmansov, M.S. Qualitative X-ray structural analysis. Novosibirsk: Science. 1986. 200 p. (In Russian)
- Lepinskikh B.M., Kitashev A.A., Belousov A.A. Oxidation of liquid metals and alloys. – Мoscow: Science, 1979. – 116 p. [In Russian].