DETERMINATION OF THE MAIN PARAMETERS OF THE ASYNCHRONOUS TRACTION MOTOR OF THE ELECTRIC LOCOMOTIVE OF THE “O'ZBEKISTON” SERIES

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ АСИНХРОННОГО ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ЭЛЕКТРОВОЗА СЕРИИ “O’ZBEKISTON”
Nazirkhonov T. Yuldashev D.
Цитировать:
Nazirkhonov T., Yuldashev D. DETERMINATION OF THE MAIN PARAMETERS OF THE ASYNCHRONOUS TRACTION MOTOR OF THE ELECTRIC LOCOMOTIVE OF THE “O'ZBEKISTON” SERIES // Universum: технические науки : электрон. научн. журн. 2022. 12(105). URL: https://7universum.com/ru/tech/archive/item/14726 (дата обращения: 22.12.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2022.105.12.14726

 

ABSTRACT

Target. Determining the parameters of asynchronous traction motors (ATM) is necessary to create a computer simulation model that allows you to reproduce electromagnetic processes in the traction drive and converters, as well as the processing functions of the obtained simulation results, adequate to the real conditions of use on electric rolling stock of converters with various control algorithms in traction and regenerative braking. To determine the parameters of the ATD in relation to the T-shaped equivalent circuit, the idle, short circuit and rated load modes are used using the motor loss separation method. Analytical expressions are obtained for calculating the main parameters of the ATD in relation to the T-shaped equivalent circuit. The main design parameters and electrical quantities are given, The results obtained can be used in a computer simulation model designed to reproduce electromagnetic processes in a traction electric drive and converters, when determining the energy characteristics of an electric locomotive series "O'zbekiston".

АННОТАЦИЯ

Цель. Определение параметров асинхронных тяговых двигателей (АТД) необходимо для создания компьютерной имитационной модели, позволяющей воспроизводить электромагнитные процессы в тяговом электроприводе и преобразователях, а также функции обработки полученных результатов моделирования, адекватные реальным условиям применения на электрическом подвижном составе преобразователей с различными алгоритмами управления в режимах тяги и рекуперативного торможения. Для определения параметров АТД применительно к T - образной схеме замещения используются режимы холостого хода, короткого замыкания и номинальной нагрузки с помощью метода разделения потерь в двигателе. Получены аналитические выражения для расчета основных параметров АТД применительно к T-образной схеме замещения. Приведены основные расчетные параметры и электротехнические величины, характеризующие режимы работы АТД серии 1TB 2KF2624 – 3EA00 электровоза серии «O’zbekiston». Полученные результаты могут быть использованы в компьютерной имитационной модели, предназначенной для воспроизведения электромагнитных процессов в тяговом электроприводе и преобразователях, при определении энергетических характеристик электровоза серии «O’zbekiston».

 

Keywords: Asynchronous traction motor, method for calculating parameters, active and inductive resistances of windings, determination of ATD parameters.

Ключевые слова: Асинхронный тяговый электродвигатель, метод расчета параметров, активные и индуктивные сопротивления обмоток, определение параметров АТД.

 

Introduction

Asynchronous electric motors are widely used in the traction drive of rail transport due to their greater reliability and lower manufacturing and operation costs compared to collector motors.

Six-axle AC electric locomotives of the “O'zbekiston” series (Picture. 1) are designed taking into account the latest trends in the field of electric locomotive construction. The characteristic features of an electric locomotive include the use of an asynchronous traction electric drive, traction converters, axis-by-axis regulation of traction and braking force, and a microprocessor control system [6].

 

Figure 1. electric locomotive "O'zbekiston"

 

The use of ATD as a traction drive is impossible without a semiconductor converter. In this case, the shape of the voltage and current of the stator winding is far from sinusoidal.

Currently, there is an urgent problem of increasing the energy efficiency of railway transport, which is associated with an increase in the energy performance of electric rolling stock (EPS). An important step in this direction is the creation of a computer simulation model that makes it possible to reproduce electromagnetic processes in the traction electric drive and converters, as well as the functions for processing the obtained simulation results that are adequate to the real conditions for using converters with various control algorithms in traction and regenerative braking modes on the ERS [1-3].

Energy consumption of EPS in operating modes is recorded by measuring instruments - electricity meters. The components of the consumption and losses of electricity for the movement of ERS can be taken into account only by analytical methods. For an adequate analysis of the energy balance, it is necessary to determine the parameters, as well as the energy performance of the converters and units of the traction electric drive.

The parameters and energy characteristics of traction converters and traction motors have an unambiguous relationship in terms of voltage level, switching frequency of power electronic devices, and current ripples.

Experimental determination of the parameters of the ATD windings in most cases is complicated by the technical conditions for the implementation of test modes. Analytical determination of the ATD parameters - active resistance and leakage inductance of the windings, the magnitude of mechanical losses and losses in the steel can be performed on the basis of no-load and short circuit modes using the loss separation method in the rated load mode [4-7].

The resistance of the stator phase windings in this case is determined by the power loss  in copper at rated load, (Ohm)

(1)

where is the stator phase current in the nominal mode .

Let's determine the power loss in the copper of the stator at rated load by the formula (W)

(2)

Where  - rotor slip in the rated load mode,  - power of the rated mode,                - coefficient of performance (efficiency) of the rated mode,  - power of losses in the stator steel in the rated load mode,  - power of mechanical losses in the rated load mode,  - power of additional losses in the stator copper, due to the spatial harmonics of the stator current.

The power of mechanical losses in the rated load mode can be taken as  W [6], the power of additional losses from spatial harmonics of the current

 

Figure 2. Dependence of the ATD efficiency on the load

 

The power loss in steel in the rated load mode is almost equal to the power loss in steel for the ¾ rated load mode. The latter can be determined from the condition of equality of the main losses in the steel and copper of the stator at the maximum motor efficiency corresponding to the mode of ¾ of the rated load (Picture. 3), (W)

(3)

Mechanical losses at the rated rotor speed are practically independent of the load, therefore, with sufficient accuracy, we can assume that .

The rotor resistance, reduced to the stator phase resistance, can be calculated from the power losses in the rotor at rated slip and reduced rotor current  (ohm):

(4)

Let's find the rotor current, reduced to the stator current, for the rated load mode according to the formula (A), [6]

(5)

Wherein  – no-load current of ATD at rated voltage and rated frequency of the stator current,  – multiplicity of the highest electromagnetic torque.

The value is determined by the rated load mode and the inductive resistance of the motor short circuit  :

(6)

Where  - the coefficient of reduction of the parameters of the ATD windings to the Г - shaped equivalent circuit.

The short-circuit impedance for the stator phase of the ATD is conditioned by the multiplicity of the short-circuit current  (ohm) equal to

(7)

Here  - motor short circuit resistance, .

Short circuit inductive reactance can be determined from the formula (Ohm)

,

(8)

Where in - engine power factor for the modeshort circuit, pre-accept    .

Idle mode current ATD (A) [6-7]

(9)

where – motor power factor for nominal mode.

After performing the calculations according to formulas (1) – (9), the values should be clarified and the refined calculation of the active and inductive resistances of the stator and rotor of the ATD should be repeated .

From the experience of designing ATD with a power of 1-1.3 MW, the ratio of the leakage inductance of the stator phase and the reduced leakage inductance of the rotor phase in relative units is 1: 0.8.

Stator phase leakage inductance (, N)

                                        ,                                                 (10)

Where - frequency of the stator voltage in the nominal mode.

Leakage inductance rotor phase (), reduced to the stator phase is equal to

                                      .                                                    (11)

Motor phase impedance at idle ( 

                                                 .                                                       (12)

The active component of the no-load current of the stator phase, (,A)

                   .                                    (13)

Stator phase magnetization current, (,A)

                              .                                                (14)

Mutual inductance resistance (, Ohm) of the windings of the stator and rotor phases are calculated by the formula

                                 ,                                                    (15)

In which is the resistance of the  - leakage inductance of the stator phase,            .

Mutual inductance of the stator and rotor phase windings, reduced to the stator (, H) is

                                                                                                  (16)

Based on formulas (10)-(16), the calculation of the main parameters of the ATD "1TB 2KF2624-3EA00" used on “O'zbekiston” electric locomotives. Passport data, design parameters and electrical values characterizing the operating modes of ATD 1TB 2KF2624 - 3EA00, are given in table. 1, and 2 [6-7].

Table 1.

 Passport data ATD "1TB 2KF2624 - 3EA00"

Options

Designation

Meaning

Rated power, kW

1020

Rotation frequency, rpm

1450

Rated line voltage, V

2100

Rated current, A

344

Power factor at 100% load

0.85

efficiency

0.94

Rated stator current frequency, Hz

50

Number of pole pairs

2

Rated rotor slip

0.015

 

Table 2.

Design parameters and basic electrical quantities of ATD "1TB 2KF2624 - 3EA00"

Parameters and data

Designation

Meaning

Power loss in stator copper at rated load, W

28484

Power of mechanical losses in the mode of rated load, W

2170

Power of additional losses from spatial current harmonics, W

5425

Power loss in steel in ¾ rated load mode, W

12750

Power loss in rotor copper at rated load, W

20345

Stator phase winding resistance, Ohm

0.079

Rotor resistance reduced to stator phase resistance, Ohm

0.046

Multiplicity of the greatest electromagnetic moment

1.9

Short circuit impedance, Ohm

0.499

short circuit inductive reactance, Ohm

0.483

Inductive reactance of leakage fluxes of the stator phase, Ohm

0.268

The inductive resistance of the leakage fluxes of the rotor, reduced to the phase of the stator, Ohm

0.214

Stator phase leakage inductance, H

0.00085335

Leakage inductance of the rotor phase, reduced to the stator phase, H

0.00068268

Motor phase impedance at idle, Ohm

12.321

The coefficient of reduction of the parameters of the windings to the L-shaped equivalent circuit

1.023

Rotor current reduced to stator current for rated load mode, A

332

Idle mode current, A

98.4

Active component of the no-load current of the stator phase, A

5.8

Magnetization current of the stator phase, A

98.2

Inductive resistance of mutual inductance of the windings of the stator and rotor phases, Ohm

12.074

Mutual inductance of the stator and rotor, reduced to the stator (magnetizing inductance), H

0.038

 

Conclusion

A method is proposed for calculating the parameters of the ATD based on the experiments of idling and short circuit using the method of loss separation in the rated load mode. Analytical expressions for calculating the parameters and the main characteristic data of ATD are obtained in relation to the t-shaped equivalent circuit. The main design parameters and electrical quantities characterizing the operating modes of the ATD series are given. 1TB 2KF2624-3EA00 electric locomotive of the O'zbekiston series.

 

Reference:

  1. Andryushchenko, A. A. Asynchronous traction drive of locomotives: textbook / A. A. Andryushchenko, Yu. V. Babkov, A. A. Zarifyan et al.; ed. A. A. Zarifyana // - M .: Educational Methodological Center for Education on the Railway. transport, 2013. - 413 p.
  2. Benkovich N.I. Asynchronous traction drive of a promising diesel locomotive for the Eastern range of Russian railways / N. I. Benkovich, I. A. Rolle // electronics and electrical equipment of transport: scientific and technical journal. St. Petersburg: PGUPS, 2019. - No. 2 - S. 35-38.
  3. Grishchenko A. V. New electrical machines of locomotives: textbook. allowance for universities railway transport / A. V. Grishchenko, E. V. Kozachenko // - M .: Textbook - method. education center on the railway. transport, 2008. - 271 p.
  4. Nazirkhonov T. M. Computer model of a traction transformer of O’Z-ELR series alternating current electric locomotive / T.M. Nazirkhonov, A.Ya. Yakushev // Proceedings of Petersburg Transport University, 2020, vol. 17, iss. 3, pp. 416–427.
  5. Syromyatnikov I. A. Operating modes of asynchronous and synchronous motors / I. A. Syromyatnikov; edited by L. G. Mamikoyants. - M.: Energoatomizdat, 1984. - 240 p.
  6. Vikulov I. P. Scomparative analysis of the technical characteristics of electric locomotives of the O'Z-ELR and O'zbekiston series / I.P. Vikulov, T.M. Nazirkhonov // Izv Petersburg University of Communications. - St. Petersburg: PGUPS, 2019. - Vol. 16, no. 1. - S. 68-76.
  7. Yakushev A. Ya. Determination of the main parameters of an asynchronous traction electric motor / A.Ya. Yakushev, T.M. Nazirkhonov, I.P. Vikulov, K.V. Markov // Proceedings of Petersburg Transport University, 2019, vol. 16, iss. 4, pp. 592–601.
Информация об авторах

PhD (Phd), acting Docent, Department of "Electric rolling stock", Tashkent State Transport University, Republic of Uzbekistan, Tashkent

канд. техн. наук (Phd), и.о. доц. кафедры «Электроподвижной состав», Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Master, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

магистр, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top