CURRENT STATUS OF COMPLEX EXTRACTION OF METALS FROM TECHNOLOGICAL SOLUTIONS OF THE MINING AND METALLURGICAL INDUSTRY

СОВРЕМЕННОЕ СОСТОЯНИЕ КОМПЛЕКСНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ТЕХНОЛОГИЧЕСКИХ РАСТВОРОВ ГОРНО-МЕТАЛЛУРГИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
Цитировать:
Khujakulov N.B., Nasirova N.R., Ibotov B.O. CURRENT STATUS OF COMPLEX EXTRACTION OF METALS FROM TECHNOLOGICAL SOLUTIONS OF THE MINING AND METALLURGICAL INDUSTRY // Universum: технические науки : электрон. научн. журн. 2022. 12(105). URL: https://7universum.com/ru/tech/archive/item/14687 (дата обращения: 06.02.2023).
Прочитать статью:
DOI - 10.32743/UniTech.2022.105.12.14687

 

ABSTRACT

The article discusses the study of the optimal technology for cleaning technological solutions from harmful impurities by adding various reagents to them, as well as the associated extraction of non-ferrous metals. Relevance of the study: obtaining a large amount of metals by cleaning harmful additives contained in technological solutions. Theories and methods of purification of technological solutions from harmful impurities, methods of extracting non-ferrous metals such as copper, nickel, zinc, and gold were studied.

АННОТАЦИЯ

В статье рассматриваются исследование оптимальной технологии очистки технологических растворов от вредных примеси путем добавления в них различные выди реагентов, а также попутное извлечение цветных металлов. Актуальность исследования: иизвлечение большого количества металлов путём очистки технологических растворов от вредных примисей. Изучено теории и способы очистки технологических растворов от вредных примеси, способы извлечение цветных металлов как медь, никель, цинк и золота. 

 

Keywords: minerals; chemical elements; non-ferrous metallurgy; heavy metals; waste water; mechanical method; biological method; physical and chemical methods; waste water disinfection.

Ключевые слова: полезные ископаемые; химические элементы; цветная металлургия; тяжёлые металлы; сточные воды; механический метод; биологический метод; физико-химический метод; дезинфекция сточных вод.

 

In the world, the mining and metallurgical industry provides a significant part of the gross domestic product and foreign exchange earnings in the country's economy. In recent years, non-ferrous metallurgy has become a highly developed branch of heavy industry. The demand for metal is increasing year by year. The development of technology, science and culture cannot be imagined without machines, mechanisms, tools and many other metal objects. In modern conditions, the rapid development of atomic energy, space technology and aviation, radio electronics and computer technology requires an increase in the volume of production of many types of metals [1, 7-8 p.].

Technologies that take into account environmental protection in most cases are characterized by the production of additional products through the introduction of low-waste technologies, the rational use of waste generated during the main production process, and in some cases, obtaining additional products during the production process requires high energy consumption and keeping equipment in working condition, requires materials and components and other operating costs [2, 158-159-p.].

Currently, among chemical elements, chemical elements with an atomic mass above 50 and their compounds - salts (or ions) of heavy metals - are the main and dangerous pollutants of environmental objects, in particular, the water environment. Today, among the heavy metals, mercury, lead, cadmium, mercury, copper, vanadium, tin, zinc, antimony, molybdenum, cobalt, nickel, etc. are recognized as the main environmental pollutants [3, 4-p.]

The results of research [4, 56-57-p.] show that with the help of bacteria, iron, zinc, nickel, cobalt, titanium, aluminum, lead, bismuth, gold, germanium, rhenium, indium, thallium, and gallium elements can be transferred from the ground to solution. Microbes that oxidize compounds of sulfur and other elements are one of the cheapest metallurgical tools.

In the last decade, a number of general problems have been identified, which are specific to the mineral raw material base of the industry and to a large extent determine the negative trends in the development of non-ferrous metallurgy, especially its mining industry. The industry of many countries was mainly focused on the processing of ores and concentrates of other countries [5].

In the process of mining and beneficiation of mines in metallurgy and related industries, a large amount of solid and liquid waste is generated, part of which is processed, and most of it is stored in landfills. Metallurgical processing processes generate large amounts of slag, sludge, dust, and gas waste that require processing [6, 27-29-p.].

The authors [7, 8-p.] divided waste into two groups - primary and secondary. The main ones include waste materials that are used directly for the production of finished products: metal, metal-containing (rock, slag, etc.) and non-metal waste. By-products include the waste of technological materials and substances used or generated in technological processes.

Extraction and processing of minerals will remain one of the strategic directions of the economy of our republic in the future. At the same time, it was shown that the tasks of protection of underground resources and rational use of mineral raw materials occupy a key place in the nature protection activities of enterprises [8, 23-26-p.].

The problem of preventing the harmful effects of low-concentration toxic heavy metal ions on environmental objects and cleaning them from pollutants is of a global scale and is considered urgent for the whole world today. In many industries there is a problem of cleaning process solutions and wastewater from heavy metal ions. This is especially relevant now, when the world community is on the brink of an environmental crisis [9, 165-p.; 10, 17-23-p.].

The ion exchange method is often used to remove lead, mercury, copper, cadmium, cobalt, phosphorus, arsenic, chromium, zinc, and iron compounds from industrial waters. Ion exchange natural materials are used in waste treatment. Alkaline medium is the most effective in extracting heavy metal ions [11; 241-251-p.].

Wastewater of 3-hydrometallurgical plant (ГМЗ-3) contains a large amount of suspended minerals, non-ferrous metals, iron sulfates, arsenic, oils and even sulfuric acid.

The following methods are commonly used for wastewater treatment in the metallurgical industry:

  • Mechanical

  • Biological

  • Physical and chemical

  • Disinfection of sewage (septic tanks, wastewater from domestic premises).

When considering mechanical methods, sieves and sieves, settling tanks, membrane elements, sand forks are used as cleaning measures. These methods make it possible to separate a significant amount of heavy large suspended particles in recycled water. Mechanical cleaning operations are essential to create a more uniform flow of wastewater.

Recently, due to the depletion of the mineral resource base of gold, refractory sulfide gold-bearing ores are involved in processing [1]. For their processing, bacterial-hydrometallurgical technologies are widely used in world practice [2,3].

The method for extracting copper from sulfate solutions in the extraction process consists in extracting copper by mixing the sulfate solution with a solution of a cation-exchange organic selective extractant, and then separating the copper extract and extraction raffinate by precipitation, purifying the reagent. extracted solution by flotation followed by filtration or coalescence. It is determined that it consists of obtaining cathode copper and spent electrolyte by electroextraction from purified copper stripping, using spent electrolyte for copper stripping. The regularities of the process of purification of copper electrolyte from arsenic by extraction using Cyanex 923 reagent as an extractant have been studied.

 

References:

  1. Уткин Н.И. Производство цветных металлов. ­М.:»Интермет Инжиниринг», 2000 - 421 с.
  2. Информационно технический справочник по наилучшим доступным технологиям (ИТС 12-2016). Производство никеля и кобальта. М: Бюро НДТ 2016-194 c.
  3. Долина Л.Ф. Современная техника и технологии для очистки сточных вод от солей тяжелых металлов: Монография. – Дн-вск.: Континент, 2008 -254 с.
  4. Иванова, Н. П. Гидроэлектрометаллургия: электронный конспект лекций для студентов специальности 1-48 01 04 «Технология электрохимических производств» / -Минск: БГТУ, 2010-103 с.
  5. Соколов В.М., Экономическая стратегия развития цветной металлургии россии в условиях интеграции отрасли в мировую экономику. Автореф. дис. док. эконом. наук.: 08.00.05; институт экономики и организации промышленного производства –2000 - 36 с.
  6. Данилова Н. Ю., Алексеев А. В., Шепель А. А. Организация процесса утилизации отходов на предприятиях цветной металлургии. Журнал: Актуальные проблемы авиации и космонавтики. 2017. №13. с. 27-29.
  7. Валуев Д.В., Гизатулин Р.А., Технологии переработки металлургических отходов: учебное пособие. Юргинский технологичесий институт. –Томск: изд-во Томского политехнического университета, 2012.-196с.
  8. Закон Республики Узбекистан от 9 декабря 1992 г., № 754-XII «Об охране природы».
  9. Юсупова А.И. Очистка сточных вод, содержащих ионы тяжелых металлов, сорбентами и экстрактами из таннинсодержащих отходов. 03.02.08. - Экология (в химии и нефтехимии). Диссертация на соискание ученой степени кандидата технических наук. Казань, КНИТУ, 2015. -с.165.
  10. Клименко Т.В. Очистка сточных вод от ионов тяжелых металлов // Современные научные исследования и инновации. –2013. - №11. –с. 17-23
  11. Sanak-Rydlewska Stanisława, Ziba Danuta. Удаление меди и ионов свинца из сточных вод с помощью ионитов // Inż. środ. - 2002. - Vol. 7, № 2. P. 241-251.
  12. Чекушин В.С. Переработка золотосодержащих рудных концентратов (обзор методов) / В.С. Чекушин, Н.В. Олейникова // Известия Челябинского научного центра. - 2005. - №4(30). - С. 94-110.
  13. Набойченко С.С. Автоклавная гидрометаллургия цветных металлов / С.С. Набойченко [и д.р.] - Екатеринбург: ГОУ УГТУ-УПИ, 2002. - 940 с.
  14. Богородский А.В. Автоклавное окисление сульфидных золотосодержащих концентратов / А.В. Богородский, С.В. Баликов, Н.В. Копылова, Ю.Е. Емельянов // Материалы первого международного конгресса «Цветные металлы Сибири – 2009», раздел IV, Производство благородных металлов. - 2009.  533-535c.
Информация об авторах

Docent, Navoi State Mining and technology university, independent applicant, Republic of Uzbekistan, Navoi

доц., Навоийского государственного горно-технологического университета, Республика Узбекистан, г. Навои

Trainee researcher of the Academy of Sciences of the Republic of Uzbekistan, Navoi branch, Republic of Uzbekistan, Navoi

стажёр-исследователь академии наук Республики Узбекистан Навоийского отделении, Республика Узбекистан, г. Навои

Assistant of the department “Metallurgy” Navoi State Mining and Technology University, Republic of Uzbekistan, Navoi

ассистент кафедры “Металлургия” Навоийского государственного горно-технологического университета, Республика Узбекистан, г. Навои

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top