преподаватель кафедры физической химии, Термезский государственный университет, Республика Узбекистан, г. Термез
СИНТЕЗ И ТЕРМИЧЕСКИЙ АНАЛИЗ ФТАЛОЦИАНИНОВОГО ПИГМЕНТА ЧЕРНОГО ЦВЕТА НА ОСНОВЕ ПАРАФЕНИЛДИАМИНА
АННОТАЦИЯ
В статье изложен способ синтеза фталоцианинового пигмента черного цвета на основе парафенилдиамина. Проведены исследования ИК-спектроскопии и УФ-спектроскопии для изучения образованных химических связей в результате синтеза. Исследованы термогравиметрические и дифференциально-термические показатели фталоцианинового черного пигмента.
ABSTRACT
The article describes a method for the synthesis of black phthalocyanine pigment based on paraphenyldiamine. Investigations of IR spectroscopy and UV spectroscopy were carried out to study the formed chemical bonds as a result of synthesis. The thermogravimetric and differential thermal parameters of phthalocyanine black pigment have been studied.
Ключевые слова: синтез, фталоцианиновый черный, парафенилдиамин, термогравиметрия, дифференциально-термический анализ.
Keywords: synthesis, phthalocyanine black, paraphenyldiamine, thermogravimetry, differential thermal analysis.
Введение. Фталоцианины (Pc) – класс фотоактивных соединений, уникальные физико-химические свойства которых исследуются во многих областях современной науки. Металлокомплексы – фталоцианинаты – являются продуктами многотоннажного промышленного синтеза (свыше 80 тыс. тонн в год), при этом большая их часть традиционно используется в качестве пигментов в составе чернил цветной печати, лакокрасочных материалов, для окрашивания пластмасс и синтетических волокон [1].
Помимо этого, сочетание ценных фотофизических характеристик и высокой термохимической устойчивости обусловливает возможность получения на основе фталоцианинов различных оптоэлектронных устройств: зарядовой памяти и активного слоя CD/DVD-дисков, газовых сенсоров, светоизлучающих устройств [2], оптических ограничителей и фоторефрактивных материалов [3]. Ряд производных фталоцианина используется в качестве сенсибилизаторов в препаратах для фотодинамической терапии онкологических заболеваний [4, 5], в качестве катализаторов для очистки углеводородов от сернистых соединений и при обезвреживании токсичных стоков [6].
Не только в нашей стране и странах СНГ спрос пигменты на основе органического происхождения постоянно увеличивается. По этому поводу, изучение способов получения фталоцианиновых органических пигментов и их свойств является актуальным.
Целю данной работы является получение и исследование нового фталоцианинового пигмента черного цвета.
Новизна работы: Впервые был синтезирован фталоционниновый пигмент на основе химической реакции фталевой кислоты, мачевины и парафенилдиамина. Вышеуказанные реагенты являются местные сырья и позволить сократить долю импотра.
Экспериментальная часть. Синтез фталоцианинового пигмента черного цвета осуществляется следующим образом: в трехгорлую колбу, снабженной обратным холодильником и автоматической мешалкой, вносили 14,8 г фталевой кислоты и 24 г мочевины. Далее колбу нагревали до температуры 120-145 °С. После этого добавляли 10,8 г парафенилдиамина, нагревали реакционную смесь до температуры 180 °С и добавляли катализатор. Затем полученную массу нагревали в течение 1,5─2 ч при температуре 95-100 °С и продолжали интенсивное перемешивание, после реакции образовалось пористое вещество черного цвета.
Полученную массу охлаждали до комнатной температуры и растирали в фарфоровой ступке, добавляли к ней 50 мл (90%-ой) серной кислоты. При этом черная пористая масса растворяется. В процессе плавления раствор начинает нагреваться, поэтому растворенный продукт смешивали с дистиллированной водой. При этом непрореагировавшие исходные продукты и промежуточные продукты растворяются. Раствор промывали дистиллированной водой для нейтрализации. После фильтрации нейтрализованного раствора на воронке Бюхнера полученный продукт сушили в сушильном шкафу при температуре 80°С. Получили продукт весом 24,8 г. На рисунке 1 показана химическая реакция синтеза фталоцианинового черного на основе парафенилдиамина.
/Sodikov.files/image001.png)
Рисунок 1. Уравнение химической реакции синтеза фталазианинового пигмента на основе парафенилдиамина
Для определения образовавшихся химических связей после реакции взаимодействия фталевого ангидрида, парафенилдиамина и мочевины было проведено исследование ИК-спектроскопии. На рисунке 2 изложена полученная спектрограмма в результате ИК-спектроскопии синтезированного фталоцианинового черного.
/Sodikov.files/image002.jpg)
Рисунок 2. ИК-спектры фталазианинового черного пигмента на основе парафенилдиамина
На основании анализа установлено, что на ИК-спектре пигмента наблюдается наличие колебательных связей растяжения в области 1705 см-1 (С=N), связей амидных функциональных групп в области 1506 см-1, колебательных связей деформации (C-H) в области 1375 см-1, группы (C-N) в области 1170 см-1, группы (C-O) при 1083 см-1, бензольного кольца при 977 см-1 (C-C закрыты), присутствие (-NH-) при 823 см-1 .
/Sodikov.files/image003.jpg)
Рисунок 3. Отношение светопоглощения к длине волны раствора парафенилдиаминсодержащего фталазианинового пигмента в УФ-спектрофотометре
На рисунке 3 приведены результаты измерения раствора пигмента полимерной краски парафенилдиамина в диметилформамиде на УФ-спектрофотометре в видимом спектре света 190-1100 нм. Было обнаружено, что пигмент краски полимерный парафенилдиамин имеет высокий уровень поглощения в видимом диапазоне длин волн от 500 нм до 600 нм. Наибольшее поглощение определяли при длине волны 610 нм. В результате в качестве красителя для синтетической сажи был использован полимерный красящий пигмент с парафенилдиамином с учетом способности поглощать фотоны света.
Для проверки термостабильности синтезированного парафенилдиаминового пигмента его анализировали дифференциально-термическим и термогравиметрическим методами (DTG-60, SIMULTANEOUS DTA-TG APARATUS SHIMADZU, Япония). На рисунке 4 показана дериватограмма дифференциально-термического и термогравиметрического анализа. Полученная дериватограмма состоит из 2 кривых. В ней есть аналогичная информация, например, какими термическими свойствами обладает исследуемый полианилин, какую температуру он переносит, как претерпевает изменения под влиянием температуры, то есть при какой температуре и какой ценой происходит потеря массы, проводится термический анализ. Термические анализы проводились в диапазоне температур от 20°С до 600°С, в атмосфере аргона со скоростью 10 градусов в минуту.
/Sodikov.files/image004.jpg)
Рисунок 4. Термический анализ синтезированного парафенилдиамина, содержащего фталазианиновый пигмент
Эндотермическая кривая полученной дериватограммы реализовывалась преимущественно в интервале трех интенсивно разлагающихся температур. Первый интервал разложения длился 11,76 минут от 37 oC до 145 oC, а потеря массы составила 0,026 мг или 0,618 %. Во втором интервале дезинтеграции, начиная с 145,59°С до 250,63°С, потеря массы происходит за 22,32 минуты и составила 3,518 мг или 83,682%. Третий интервал разложения происходит с 250,63 °С до 601,77 °С, длился 58,3 мин, потеря массы составила 0,564 мг или 13,416%.
Так, масса уменьшается на 0,618 % за счет потери влаги до 100 oC. Следующая потеря массы начинается при 145,59 oC, когда ожидается разложение кислоты с возможным выделением воды. Выше 200 оС вещество разжижается, а выше 220 оС происходит разложение основной структуры вещества.
Заключение: По результатам термического анализа были показаны свойства синтезированного парафенилдиаминсодержащего фталазианинового пигмента, как высокотемпературного стабильного пигмента за счет присутствия в полученном пигменте аминосоединений. Это объясняется тем, что азот- и углеродсодержащие соединения положительно влияют на создание фталоцианиновой структуры нового состава.
Приведены результаты УФ-спектрофотометрии синтезированного парафенилдиаминсодержащего фталацианинового пигмента в диапазоне видимого света 190-1100 нм. В результате пигмент полимерной краски парафенилдиамин был рекомендован к использованию в качестве краски для получения синтетической черной краски с учетом его способности поглощать фотоны света.
Список литературы:
- Файзиев Ж.Б., Бекназаров Х.С., Джалилов А.Т. Синтез и свойства фталоцианина меди // Универсум: Технические науки : электрон. научн. журнал. 2020. № 3(72). URL: http://7universum.com/ru/tech/archive/item/9042
- Штайнер Р.И., Миски Ю.Д. Применение красителей, производство промежуточных красителей и красителей // Riegel's Handb. инд. хим. Springer, Дордрехт, 1992. С. 863–915.
- Юсупов М., Бекназаров Х., Тиллаев А., и Соттикулов Э., (2019) «Исследование нового медь-, азото-фосфорсодержащего фталоцианинового пигмента», Научный вестник Наманганской госуниверситета: Вып. 1: Вып. 7, статья 10. Доступно по адресу:
- Носова Г.И. и другие. Фоточувствительность полиимидов и полихиназолонов на основе ароматических и гетероароматических диаминов // Полим. науч. Сэр. A 2008 508. Springer, 2008. Vol. 50, № 8. С. 901–910.
- Розсипал Т., Халамек Э., Коблиха З. Спектрофотометрическое определение трис(2-хлорэтил)амина с использованием кислых красителей // J. Appl. Спектроск. 2018 846. Springer, 2018. Vol. 84, № 6. С. 1139–1144.
- Липин В.А. и другие. Сорбция анионных красителей полиамфолитными гидрогелями на основе гидролизованного полиакриламида, модифицированного алифатическими диаминами // Успехи химии. Дж. Физ. хим. A 2022 962. Springer, 2022. Vol. 96, № 2. С. 387–390.