COMPARATIVE EVALUATION OF THE EFFICIENCY OF VARIOUS MATERIALS IN THE PROCESS OF REDUCING MAGNETITE FROM SLAG MELT

СРАВНИТЕЛЬНАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ РАЗЛИЧНЫХ МАТЕРИАЛОВ ПРОЦЕССЕ ВОССТАНОВЛЕНИЯ МАГНЕТИТА ШЛАКОВОГО РАСПЛАВА
Цитировать:
Ochildiev Q.T., Khasanov A.S., Khojiev S.T. COMPARATIVE EVALUATION OF THE EFFICIENCY OF VARIOUS MATERIALS IN THE PROCESS OF REDUCING MAGNETITE FROM SLAG MELT // Universum: технические науки : электрон. научн. журн. 2022. 11(104). URL: https://7universum.com/ru/tech/archive/item/14647 (дата обращения: 22.12.2024).
Прочитать статью:

 

ABSTRACT

The article presents a comparative analysis of studies on the reduction of the magnetite mineral contained in the slags of the copper smelter. Carbon, iron, and sulfur were chosen as reducing substances, and information about their relatively cheap local sources is given. According to a comparative analysis of the studies carried out, the reduction of magnetite to slag with elemental sulfur gave better results compared to other reducing agents.  

АННОТАЦИЯ

В статье представлен сравнительный анализ исследований по восстановлению минерала магнетита, содержащегося в шлаках медеплавильного производства. В качестве восстановительных веществ выбраны углерод, железо и сера, приведены сведения об их относительно дешевых местных источниках. Согласно сравнительному анализу проведенных исследований, восстановление магнетита в шлак с элементарной серой дало лучшие результаты по сравнению с другими восстановителями.

 

Keywords: magnetite, slag, reduction, carbon, iron, sulfur, temperature.

Ключевые слова: магнетит, шлак, восстановление, углерод, железо, сера, температура.

 

From the theory of pyrometallurgical processes and the practice of metallurgical enterprises, it is known that magnetite in a molten slag can be reduced by the following reactions [1-2].

Fe3O4 + C = 3FeO + CO                                             (1)

Fe3O4 + Fe = 4FeO                                                 (2)

2Fe3O4 + S = 6FeO + SO2                                           (3)

To evaluate the effectiveness of various reducing agents, special studies have been carried out. The experiments were carried out according to the procedure described in [3]. For research, a synthetic slag was prepared similar in composition to the real converter slag in the composition, %: 26 SiO2; 53 FeO and 21 Fe3O4. The carbon source was the magnetized fraction after the magnetic separation of the clinker of the zinc plant (Almalyk MMC), and the magnetized fraction after the magnetic separation of the clinker of this plant was used as the source of iron [4]. In addition, technical sulfur from the Mubarak Gas Processing Plant was chosen as a source of sulfur. The results of the conducted studies are presented in Figure 1 and Table 1.

 

Figure1. Change in the residual content of magnetite over time when using various materials, temperature - 1300 ° C: 1 - sulfur; 2 - iron; 3 - carbon

Table 1.

Influence of the reducing agent material on the kinetics of magnetite reduction in slag of the initial composition, %

Reducing agent

Time, minutes

Change in the amount of magnetite in the slag, %

Degree of reduction, %

Fe3O4

Fe3O4

Iron

5

11,80

40,50

10

9,47

52,70

15

7,58

61,1

20

6,52

66,9

25

4,88

75,1

30

3,65

81,5

35

2,86

85,2

Carbon

5

14,11

29,5

10

11,82

41,2

15

9,95

50,6

20

8,46

58,2

25

6,66

66,2

30

5,55

72,5

35

4,26

78,7

Sulfur

5

5,88

71,1

10

3,72

80,9

15

2,86

85,2

20

1,12

94,5

25

1,34

93,8

30

0,26

99,2

35

0,33

98,9

 

As can be seen from the above results, sulfur turned out to be the most effective reducing agent in this case. The reducing power of solid carbon and iron is approximately the same [5-6].

A certain scientific and practical interest is the study of a deeper degree of reduction of magnetite to wustite and up to the appearance of metallic iron in time [7]. For this purpose, according to the previously described method, studies were carried out on the reduction of magnetite with a solid reducing agent located in the slag melt. The studied slag had the composition, %: 20 Fe3O4, 25 SiO2, 55 FeO. Experiments were carried out at temperatures of 1250 oC, 1350 oC. The results of the experiments were controlled by X-ray microanalysis [8].

The mineralogical analysis of a vertical section of a carbon-slag sample taken 2.7 · 103 s and 3.6 · 103 s after the start of the experiment at a temperature of 1250 °C showed that carbon did not undergo any noticeable changes. In the main volume of slag there are relatively large (0.05¸0.1 x 0.5¸2.0 · 10-3m) fayalite crystals, between which there are glass, magnetite and fine-grained fayalite [9]. The content of magnetite in general over the entire plane of the slag section is about 2% at 2.7· 103 s, 1% at 3.6 · 103 s. In the horizontal section from carbon to the crucible wall, there is no appreciable difference in the concentration of Fe3O4. On the border with carbon, in some places there are areas of one fayalite and acid glass. There is no metallic iron in the sample [10].

After 1.8 · 103 s of being in the slag at 1350 °C, carbon samples were subjected to severe corrosion, and drops of cast iron accumulated on their surface in abundance. In the horizontal and vertical sections of the cut section, carbon is slag, magnetite is absent. The data obtained are in good agreement with the data in Table 1 in terms of the reduction of magnetite molten slag with carbon-containing material.

Based on the studies conducted on the comparative evaluation of the effectiveness of various materials, it is necessary to select a relatively cheap reducing agent, preferably produced in our Republic, since import is very problematic due to the high cost of the material, transportation costs, taxes, etc. In the absence of a reducing agent in Uzbekistan, it is possible to use its substitute in the form of a sulfur-containing middling product of metallurgical and chemical industries.

In this regard, a search was made for an alternative source of reducing agents. This material turned out to be a composite material in the form of technical sulfur and zinc production clinker, which is a technogenic raw material in the form of an intermediate product from the Waelzing of zinc cakes. Hundreds of thousands of tons of this material have accumulated in special storages and can be used without special preliminary preparation.

 

References:

  1. Alamova G.Kh., Khojiev Sh.T., Okhunova R.Kh. Comparative Estimation of the Efficiency of Various Materials in the Reduction of Magnetite in Slag Melt // International Journal for Innovative Engineering and Management Research. – India, 2021. – Vol.10, Issue 3. – P. 191-196.
  2. Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. – India, February 2019. – Vol.6, Issue 2. – P. 8094 – 8099.
  3. Khojiev Sh.T., Yusupkhodjaev A.A., Rakhmonaliev M., Imomnazarov O.O’. Research for Reduction of Magnetite after Converting // Kompozitsion materiallar. – Toshkent, 2019. – № 4. – C. 54 – 55.
  4. Matkarimov S.T., Yusupkhodjaev A.A., Khojiev Sh.T., Berdiyarov B.T., Matkarimov Z.T. Technology for the Complex Recycling Slags of Copper Production // Journal of Critical Reviews. – Malaysia, April 2020. – Vol.7, Issue 5. – P. 214 – 220.
  5. Khojiev Sh.T., Nuraliev O.U., Berdiyarov B.T., Matkarimov S.T., Akramov O‘.A. Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки. – Москва, 2021. – № 3. – C. 60-64.
  6. Юсупходжаев А.А., Хожиев Ш.Т., Акрамов У.А. Использование нетрадиционных восстановителей для расширения ресурсной базы ОАО «Узметкомбинат» // Черные металлы. – Москва, 2021. – № 4. – С. 4 – 8.
  7. Berdiyarov B.T., Khojiev Sh.T. Thermodynamic analysis of reduction of oxidized copper compounds in a slag phase // Kompozitsion materiallar. –Toshkent, 2021. – № 4. – С. 39 – 43.
  8. Хожиев Ш.Т., Бердияров Б.Т., Мухаметджанова Ш.А., Нематиллаев А.И. Некоторые термодинамические аспекты карботермических реакций в системе Fe-Cu-O-C // Ozbekiston kimyo jurnali. – Toshkent, 2021, – №6. – C. 3 – 13.
  9. Khasanov A.S., Ochildiev Q.T., Khojiev Sh.T., Mashokirov A.A. Transfer of copper cations in iron vacancies of non-stoichiometric wustite in the magnetite phase // Universum: технические науки: электрон. научн. журн. – Москва, 2022. – № 10(103), часть 6. – C. 19-22.
  10. Khasanov A.S., Khojiev Sh.T., Ochildiev Q.T., Abjalova Kh.T. The main factors affecting the rate of separation of the slag and matte phases by their density: a general overview // Universum: технические науки: электрон. научн. журн. – Москва, 2022. – № 10(103), часть 6. – C. 23-27.
Информация об авторах

Associate professor of “Metallurgy” department, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

и.о. доцент кафедры «Металлургия», PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Doctor of Technical Sciences, Professor, Deputy Chief Engineer for Science, JSC "AMMC", Uzbekistan, Almalyk

д-р. техн. наук, профессор, заместитель главного инженера по науке АО «АГМК», Узбекистан, г. Алмалык

Associate professor of “Metallurgy” department, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

и.о. доц. кафедры Металлургия, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top