MODELING OF THE FORCE IMPACT FROM ROLLING STOCK ON THE RAILWAY TRACK

МОДЕЛИРОВАНИЕ СИЛОВОГО ВОЗДЕЙСТВИЯ ОТ ПОДВИЖНОГО СОСТАВА НА ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ
Begmatov N.I. Ergashev U.E.
Цитировать:
Begmatov N.I., Ergashev U.E. MODELING OF THE FORCE IMPACT FROM ROLLING STOCK ON THE RAILWAY TRACK // Universum: технические науки : электрон. научн. журн. 2022. 11(104). URL: https://7universum.com/ru/tech/archive/item/14617 (дата обращения: 22.12.2024).
Прочитать статью:

 

ABSTRACT

The article presents a simulation of the interaction of the rolling stock – railway system in the "Universal Mechanism" software package. The Universal Mechanism software package is designed to automate the process of studying mechanical objects, which can be represented by a system of absolutely solid or elastic bodies connected by kinematic and force elements. The force effects from moving units when they are handled according to a standard and lightweight track design are determined.

АННОТАЦИЯ

В статье приводится моделирование взаимодействия системы подвижной состав – железнодорожный путь в программном комплексе «Универсальный механизм». Программный комплекс «Универсальный механизм» предназначен для автоматизации процесса исследования механических объектов, которые могут быть представлены системой абсолютно твердых или упругих тел, связанных посредством кинематических и силовых элементов. Определены силовые воздействия от подвижных единиц при обращении их по типовой и облегченной конструкции пути.

 

Keywords: modeling, wheel-rail, force action, standard design, lightweight construction, movable unit

Ключевые слова: моделирование, колесо-рельс, силовое воздействие, типовая конструкция, облегченная конструкция, подвижная единица

 

Operating conditions on different railways may have significant differences. This applies, in particular, to the plan and profile of the track, axial loads and weight of trains, track width, climate, geological characteristics, traffic structure and their intensity. Any of these factors can have a noticeable impact on the choice of structural solutions for the wheel-rail system and strategies for the maintenance of the track and rolling stock. In order to avoid conflict situations when choosing technical means and strategies and to make this choice conscious, it is necessary to have a deep understanding of the basic mechanisms of interaction in the wheel-rail and rolling stock-track systems [1, 2].

Determining the values of vertical and horizontal forces acting on the path from the rolling stock when they are handled by a lightweight design is the task of this work.

Currently, the solution of this problem is simplified by the use of modern software systems designed for the study of dynamic systems. The object under consideration is represented as a set of absolutely solid bodies interconnected by articulated, elastic or dissipative elements. The process of deriving equations of motion is automated and reduced to user-defined mass, geometric, kinematic parameters, as well as force interactions of system elements [3]. In Russia, the Universal Mechanism (UM) software package has become the most popular for studying the dynamic interaction of complex systems [4, 5, 6, 7]. Currently, interest in the program is also evident outside of Russia [8, 9]. With the use of the UM software package, a number of tasks related to the infrastructure of the track economy have been solved.

It should be noted that a mechanical system in its structure can be flat or spatial, whereas for complex systems, the analysis of equations, summing up, as well as the representation of the structure of the object itself is complex.

In order to simplify the above process, the method of MIND subsystems, which includes several types of subsystems, is used in the analysis of the technical system. Thus, the components of the rolling stock can be divided into certain subsystems, after which one of the same subsystems is selected, which will later be described in order to save and avoid a large number of errors in the calculation.

The UM software package allows the use of modern computer graphics methods for graphically-animated description of the motion process in the process of numerical solution of the problem and in processing the results obtained.

The equations of motion of an object are output by a special program module in symbolic or numerical form.

Object modeling requires data entry and description of key interacting calculation systems, one of which is a railway track and rolling stock.

The values of the vertical and horizontal forces acting on the path from the rolling stock when they are handled by a lightweight design will be determined by calculation on models built on the basis of the UM version software package.

The UM software package is designed to automate the process of studying mechanical objects, which can be represented by a system of absolutely solid or elastic bodies connected by kinematic and force elements. Objects of this type include: a wagon, an electric locomotive, a diesel locomotive. The MIND makes extensive use of modern computer graphics methods both for the animated representation of motion in the process of numerical solution of the equation, and in processing the results. The equations of motion of an object are output by a special program module in symbolic or numerical form. In the process of modeling, it is necessary to define and describe the properties of two main interacting calculation systems – a railway track and a railway rolling stock [7].

The model of the railway track developed in UM is shown in Fig. 1.

 

Figure 1. Model of the railway track in the mind

 

To simulate movement along the track structure, the following mobile units are also included: a passenger locomotive (2TE10 series) and a passenger car (CVM type). Models of mobile units are shown in Fig. 2 and 3.

 

Figure 2. Appearance of the 2TE10 diesel locomotive model

 

Figure 3. General view of a computer model of a passenger car

 

References:

  1. Zaxarov S.M. Obobщenie mirovogo opita tyajelovesnogo dvijeniya. Upravlenie soderjaniem sistemi koleso – rels: ucheb. dlya vuzov [Generalization of the world experience of the heavyweight movement. Content management of the wheel–rail system]. / S.M. Zaxarov (Ed.). – Moscow: Inteks, 2017. – 420 pp. [in Russian].
  2. Begmatov N.I., Muhammadiyev N.R. Eksperimentаlnoe opredelenie jestkosti relsovoy niti [Experimental determination of the stiffness of the rail thread] // TSTU. 2021. №1. [in Russian]. URL: https://cyberleninka.ru/article/n/eksperimentalnoe-opredelenie-zhestkosti-relsovoy-niti.
  3. Pogorelov D.Yu. Kompyuternoe modelirovanie dinamiki texnicheskix sistem s ispolzovaniem programmnogo kompleksa “Universalniy mexanizm” [Computer simulation of the dynamics of technical systems using the "Universal Mechanism" software package] // Vestn. Kompyuternix i informatsionnix texnologiy. – 2005. – № 4. – p. 27–34. [in Russian].
  4. Dmitry Pogorelov, Alexander Rodikov, Roman Kovalev. Parallel computations and co-simulation in Universal Mechanism software. Part 1: Algorithms and implementation Transport problems. 2019. Volume 14, Issue 3. DOI: 10.20858/tp.2019.14.3.15. [in English].
  5. Dmitry Pogorelov, Alexander Rodikov, Roman Kovalev. Parallel computations and co-simulation in Universal Mechanism software. Part II: examples Transport problems. 2019 Volume 14 Issue 4. DOI: 10.20858/tp.2019.14.4.3. [in English].
  6. Dmitry Pogorelov et al. Train 3D: the technique for inclusion of three-dimensional models in longitudinal train dynamics and its application in derailment studies and train simulators / Vehicle System Dynamics, Published online: 11 Jan 2017 DOI: 10.1080/00423114.2016.1273532. [in English].
  7. Universal mechanism // Моделирование взаимодействия железнодорожных экипажей и пути [Modeling the interaction of railway crews and tracks]. / Rukovodstva polzovatelya. – 2021. – 21 pp. [in Russian].
  8. Ying Song, Lei Liang, Yanliang Du, Baochen Sun. Railway Polygonized Wheel Detection Based on Numerical Time-Frequency Analysis of Axle-Box Acceleration / Applied sciences. - 2020. - Vol. 10. - Iss. 5. DOI: 10.3390/app10051613 [in English].
  9. Iman Hazrati Ashtiani. Optimization of secondary suspension of three-piece bogie with bevelled friction wedge geometry / International Journal of Rail Transportation. – 2017. Vol. 5. – Iss. 4. 213-228p. DOI 10.1080/23248378.2017.1336652 [in English].
Информация об авторах

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный университет путей сообщения, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top