Boymurodov N.A.
Boymurodov N.A. THE CURRENT STATE OF THE STUDY OF GEOMECHANICAL CONDITIONS OF ROCK MASSES WITH AN INCREASE IN THE DEPTH OF OPEN-PIT MINING // Universum: технические науки : электрон. научн. журн. 2022. 11(104). URL: (дата обращения: 25.06.2024).
Прочитать статью:



In this article, the current state of the study of the geomechanical state of rocks with an increase in the depth of open pit mining and the analysis of the influence of various factors on the stability of the sides and ledges of a quarry have been studied and presented.


В данной статье изучено современное состояние изучения геомеханического состояния горных пород с увеличением глубины открытых горных работ и анализ влияния различных факторов на устойчивость бортов и уступов карьера и представлены.


Keywords: Quarry, edge, ledge, deformation, rock, open pit area, stagnation, landslide, stability of open pit edges.

Ключевые слова: Карьер, борт, уступ, деформация, порода, карьер, застой, оползень, устойчивость бортов карьера.


The development of modern quarries is characterized by a significant increase in depth and a transition to the development of deep-seated ores; the depth of open-pit mining has crossed the mark of a thousand meters from the earth's surface (Table 1, Figure 1) [1-13].

Table 1.

Information about the deep quarries of the world



Extracted mineral

Start of production

Size, km

Depth, m

Kennecott Bingham Canyon Mine


Copper, molybdenum, gold

Since 1863





Copper, gold, silver, rhenium, selenium

more than a hundred years until 2018 - then transition to underground mining




South Africa








since 1893 - 2018






since 1971





Copper, gold, silver

since 1990






since 1958



Sibai quarry


Copper, zinc, sulfur

since 1939



Batu Hijau


Gold, copper






Gold, copper

since 1973



Escondida Notre


Copper, gold, silver




Kovdorskiy mining and processing plant


Iron ore, apatite, baddeleyite





To substantiate the limiting parameters of the sides and ledges of deep pits, it is necessary to conduct a set of studies of the most significant mining-geological and mining-technical factors (Figure 1), which include:

  • study of physical and mechanical properties of mixed rocks;
  • structural-tectonic studies;
  • hydrogeological research;
  • numerical simulation of the stress-strain state of a rock mass by the finite element method in a three-dimensional formulation.

In the practice of open pit mining, all factors affecting the stability of open pit walls can be divided into four groups (Figure 1): engineering-geological, hydro-geological, physical-geographical, mining [14, 15 - 19].


Figure 1. Classification of factors affecting the stability of ledges and pit walls


Prediction of deformation processes is possible on the basis of an integrated approach, including the study of the structural-tectonic structure and strength properties of the massif, instrumental observations of the deformation of various sections of the near-edge massif, assessment of the level and direction of tectonic forces, as well as geomechanical calculations of stability [14, 20 - 22].

The performance of mining operations in a quarry in accordance with the design documentation does not always guarantee the absence of deformations of the sides, local sections of the sides and ledges, especially when forming the ultimate contour of the quarry. The reasons for the resulting violations of the stability of the near-edge massif are different depending on the geological, engineering-geological, hydrogeological conditions and parameters of the side in a particular section of the quarry field [14, 20, 21]. Therefore, each mineral deposit is unique from the point of view of geomechanics and requires an individual approach to determining the factors affecting stability and assessing the degree of their influence.

During open-pit mining, various deformations of the sides of quarries and dumps take place in the form of landslides, collapses and landslides, talus and slush, subsidence [11, 23]. As Fisenko G.L. noted in his work: “There is no clear boundary between individual types of deformations. Screes and collapses differ in the relative size of the deforming massifs, and collapses and landslides differ in the rate of deformation, which depends on the slope of the sliding surface and on the nature of the stress state of the rocks along the sliding surface” [21].

Table 2 presents the classification of quarry wall deformations and the conditions for their occurrence [22].

Table 2.

 Classification of quarry wall deformations

Deformation type



Occurrence condition


Separation of individual particles, pieces of rock and their rolling to the bottom of the ledge

Weathering Influence of explosions

The slope angle is greater than the natural angle

rock slope


Separation and rapid displacement of large volumes of rock masses that make up the slope, the active stage occurs almost instantly

Overestimation of slope angle or side height Presence of disjunctive disturbances and cracks

Falling layers, disjunctive disturbances and

cracks towards the notch


Separation and slow movement of rock masses on the sliding surface under the influence of gravity

Presence of plastic interlayers and weak contacts in the rock mass Water flooding of rocks

25-35º egilish burchaklarini hosil bo‘lishi


Vertical lowering of the edge sections of loose rocks without the formation of a sliding surface

Moistening of highly porous sediments Compaction of spoil heaps or backfilled pits Underground mining



Movement of the flow of water-saturated loose rock masses

Lack of drainage devices Intensive precipitation



According to the results of the study by Galperin A.M. two thirds of the quarries are subjected to deformation processes. At the same time, there is a trend of increasing cases of loss of slope stability with increasing mining depth. When mining to a depth of 100 m, half of the studied quarries are subject to deformations, with the transition to greater depths, the proportion of quarries increases to 80%. The analysis performed at VIOGEM showed that 75% of the deformations occur in sandy-argillaceous deposits and only 25% occur in slopes composed of rocky and semi-rocky fractured rocks [24].

As noted in their works Umarov F.Ya. and Rybin V.V. With an increase in the depth of existing and planned quarries, the issues of ensuring the stability of the sides and ledges turn into problems of great economic importance [25, 26].

The influence of various factors on the stability of the sides and ledges of quarries has been considered in many works of foreign and domestic authors. An invaluable contribution to the development of geomechanics of open pit mining is made by such scientists as: Melnikov N.V., Rzhevsky V.V., Trubetskoy K.N., Fisenko G.L., Shpakov P.S., Popov V.N., Galperin A.M.

When developing deposits by open method, an urgent task is to ensure the safety and efficiency of mining operations. The solution of this problem is possible on the basis of geomechanical studies of the rock mass and mathematical modeling.

Scientists have been dealing with issues of ensuring the stability of the sides and slopes of a quarry for more than a decade. During this time, several main schools with different and related directions in solving the issues of stability of rock masses have been formed.

Fisenko G. L., Kuvaeva N. N., Poklada G. G., Mochalova A. M., Zoteeva V. G., Tsimbarevich P. M., Galustyan E. L., Popova V. N., Halperina A. M. and others are among the scientists involved in ensuring the stability of open pit mining.


In conclusion, it can be said that despite a large number of studies, the problem of ensuring the stability of the quarry board is still relevant today. The reason for the impossibility of defining a single standard approach to solving this problem lies in the combination of various levels of influence of many factors that determine the individual characteristics of each mining area. Such factors include mining-geological and hydrogeological conditions, changes in the internal physical and mechanical properties of the quarry, effects of explosions and earthquakes, stress-strain conditions, etc.

The way out of this situation is the development of methods and recommendations, including the collection of necessary preliminary data, analysis of research results, and mathematical modeling of stability.



  1. А.С. Калюжный. Определение параметров нарушенной зоны и объемов потенциальных вывалов для условий карьера «Олений ручей». 2016 г.
  2. Н.Н. Мельников, А.А. Козырев, С.В. Лукичёв. Большие глубины – новые технологии.
  3. Andrés Parra, Nelson Morales, Javier Vallejos & Phu Minh Vuong Nguyen. Open pit mine planning considering geomechanical fundamentals.
  4. Fimiston Open Pit “Super Pit” Gold Mine.
  5. Fimiston Open Pit mine (Super Pit gold mine).
  6. J Jiang, K Karunaratna and T Jones. Mining Through Underground Workings in Fimiston Open Pit Kalgoorlie Consolidated Gold Mines (KCGM).
  9. Dowling J., Beale G., Bloom J. Designing a Large Scale Pit Slope Depressurization System at Bingham Canyon // International Mine Water Association Annual Conference. Reliable Mine Water Technology. 2013. Vol. I, pp. 119–125.
  10. Tapia A., Contreras L.F., Jefferies M., Steffen О. Risk evaluation of slope failure at the Chuquicamata mine // Slope Stability 2007. Proceedings of 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering (ed. Y Potvin). 2007. pp. 477–495.
  11. Brummer R.K., Li H., Moss A., Casten T. The Transition from Open Pit To Underground Mining: An Unusual Slope Failure Mechanism at Palabora//Proceedings of International Symposium on Stability of Rock Slopes in OpenPit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy. 2006. pp. 411–420.
  12. Wines D.R., Lilly P.A., Measurement and analysis of rock mass discontinuity spacing and frequency in part of the Fimiston Open Pit operation in Kalgoorlie, Western Australia: a case study // International Journal of Rock Mechanics & Mining Sciences, 2002, Vol. 39, no 5. 2002. pp. 589 602.
  13. J. Wesseloo and J. Read, Acceptance Criteria, in Open Pit Slope Design, CSIRO, Leiden, 2013, pp. 221–236.
  14. Ракишев Б.Р., Кузьменко С.В., Съедина С. А., Тулебаев К.К. анализ влияния горно-геологических факторов на устойчивость бортов на примере сарбайского карьера. Доклады НАН РК, №3, 2018 г., Алматы, ISSN 2518-1483 (Online), ISSN 2224-5227 (Print). С. 19-25
  15. А.С. Ковров. Влияние сложной геологической структуры и обводненности массива пород на устойчивость откосов карьеров.
  16. ВНИМИ. Методические указания по определению углов наклона бортов, откосов уступов и отвалос строящихся и эксплуатируемых карьеров. – Л., 1972. – 163 с.
  17. Попов В.Н., Шпаков П.С., Юнаков Ю.Л. Управление устойчивостью карьерных откосов. Москва. Издательство «Горная книга», 2008 г.
  18. Фисенко Г.Л. Устойчивость бортов карьеров и отвалов. Издание 2. Недра, Москва, 1965 г., 378 стр., УДК: 622.271.001.5.
  19. Б.Р. Ракишев, А.Н. Шашенко, А.С. Ковров. Геомеханическая оценка устойчивости бортов карьеров и отвалов. Алматы: «Ғылым» НАН РК, 2017. – 234 с.ISBN 978-601-323-103-7.
  20. А.В. Яковлев. Геомеханическое обеспечение формирования бортов карьеров и отвалов. Проблемы недропользования №4, 2016 г. УДК 622.271.333: 624.131.537 DOI: 10.18454/2313-1586.2016.04.075. С 75-80.
  21. Изучение гидрогеологических и инженерно-геологических условий месторождений полезных ископаемых. М.: Недра, 1986. 172 с.
  22. Епифанова М.С., Федоров С.А., Козырев А.А., Рыбин В.В., Волков Ю.И. Инженерно-геологические аспекты проектирования глубокого карьера Ковдорского ГОКа // Горный журнал. 2007. №9. — С. 30–33.
  23. Б.Р. Ракишев, А.С. Ковров, А. У. Кожантов, К. Сейтулы. Проблемы оползней на карьерах.
  24. Гальперин А.М. Геомеханика открытых горных работ.
  25. В.В. Рыбин. Развитие теории геомеханического обоснования рациональных конструкций бортов карьеров в скальных тектонически напряженных породах. Диссертация на соискание ученой степени доктора технических наук. Апатиты, 2016 г.
  26. Ф. Я. Умаров. Воздействие факторов, влияющих на устойчивость бортов карьеров.
  27. Х.А.Нурхонов, А.М.Хужакулов, Н.А.Боймуродов. Проектирование параметров контурного взрывания // Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – С. 825-832.
  28. Каримов Ё.Л., Латипов З.Ё., Каюмов О.А., Боймуродов Н.А.  Разработка технологии закрепления солевых отходов рудника Тюбегатанского горно-добывающего комплекса // Universum: технические науки. – Москва, 2020. – №12(81). – С. 59-63
  29. Каримов Ё.Л., Латипов З.Ё., Каюмов О.А., Боймуродов Н.А. Моделирование и установление координатов центра масс отвала и хвостов Тюбегатанского калийного месторождения. // Universum: технические науки. – Москва, 2021. – №2(83). – С. 25-29
  30. Норов Ю.Д., Каримов Ё.Л., Латипов З.Ё., Боймуродов Н.А. Вскрытие и подготовка при валовой выемке сложных рудных тел с прослоями и включениями пород на месторождении «Зармитан» // Социально-экономические и экологические проблемы горной промышленности, строительства и энергетики сборник научных трудов 15-й международной конференции. Минск – Тула – Донецк 29-30 октября 2019 г. С. 178.
  31. Norov Y., Karimov Y., Latipov Z., Khujakulov A., Boymurodov N. Research of the parameters of contour blasting in the construction of underground mining works in fast rocks // IOP Conference Series: Materials Science and Engineering 1030 (1), 012136, 2021 y.
  32. N.A.Boymurodov. Ochiq konchilik ishlarining chuqurligi oshishi bilan tog‘ jinslarining geomexanik sharoitlarini o‘rganishning hozirgi holati // Innovative, educational, natural and social sciences, 2022 ISSUE 10. Pages 148-155.
Информация об авторах

Assistant department of “Mining” Karshi engineering and economics institute, Republic of Uzbekistan, Karshi

ассистент кафедры “Горное дело”, Каршинский инженерно-экономический институт, Республика Узбекистан, г. Карши

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.