THE MAIN FACTORS AFFECTING THE RATE OF SEPARATION OF THE SLAG AND MATTE PHASES BY THEIR DENSITY: A GENERAL OVERVIEW

ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РАЗДЕЛЕНИЯ ШЛАКОВОЙ И ШТЕЙНОВОЙ ФАЗ ПО ИХ ПЛОТНОСТИ: ОБЩИЙ ОБЗОР
Цитировать:
THE MAIN FACTORS AFFECTING THE RATE OF SEPARATION OF THE SLAG AND MATTE PHASES BY THEIR DENSITY: A GENERAL OVERVIEW // Universum: технические науки : электрон. научн. журн. Khasanov A.S. [и др.]. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14459 (дата обращения: 02.05.2024).
Прочитать статью:

 

ABSTRACT

The article discusses the main factors affecting the rate of separation of the slag and matte phases by their density, one of the urgent problems of copper production. The results of the analysis showed that during the processing of sulfide copper concentrates in melting furnaces, due to the high partial pressure of oxygen, a large amount of magnetite compound appears in the system, which increases the density of the slag. An increase in slag density slows down the separation of the slag and matte phases. As a result, the loss of copper with slag increases, which leads to a decrease in the productivity of the furnace for copper. 

АННОТАЦИЯ

В статье рассмотрены основные факторы, влияющие на скорость разделения шлаковой и штейновой фаз по их плотности, одной из актуальных проблем медного производства. Результаты анализа показали, что при переработке сульфидных медных концентратов в плавильных печах из-за высокого парциального давления кислорода в системе появляется большое количество соединения магнетита, что увеличивает плотность шлака. Увеличение плотности шлака замедляет разделение шлаковой и штейновой фаз. В результате увеличиваются потери меди со шлаком, что приводит к снижению производительности печи по меди.

 

Keywords: magnetite, copper, density, slag, matte, phase separation, copper loss, matte droplets.

Ключевые слова: магнетит, медь, плотность, шлак, штейн, разделение фаз, потери меди, штейновые капельки.

 

One of the main reasons why copper remains in the converter slag in large quantities is the increased density of the slag [1]. The substance that increases the density of converter slag is magnetite [2]. In order to determine the specific density of the converter slag selected for the study, its mineralogical composition was first determined [3]. The material composition of the converter slag selected for the study is presented in Table 1 [4].

Table 1.

Mineralogical composition of the converter slag of “Almalyk Mining and Metallurgical Combine” selected for the experiment, %

Fe3O4

Fe2SiO4

Al2O3

MgSiO3

CaSiO3

TiO2

K2SiO3

FeS

19,70

33,66

8,75

4,39

2,83

0,30

3,72

7,49

Na2SiO3

ZnSiO3

PbSiO3

BaSiO3

Ca3(PO4)2

Cu2S

Cu2O

others

6,11

2,76

1,18

0,35

1,99

3,58

2,03

1,08

 

Based on the material composition presented in Table 1, the density of the converter slag was determined using the specific densities of each substance listed in Table 2 [5].

Table 2.

Densities of the main components in converter slag of “Almalyk Mining and Metallurgical Combine” selected for the experiment, g/cm3

Fe3O4

Fe2SiO4

Al2O3

MgSiO3

CaSiO3

TiO2

K2SiO3

FeS

5,2

4,0

3,23

2,9

2,9

4,23

2,47

4,84

Na2SiO3

ZnSiO3

PbSiO3

BaSiO3

Ca3(PO4)2

Cu2S

Cu2O

others

2,4

3,89

6,49

4,39

2,81

5,81

6,1

2,3

 

Using the individual densities of each component given in Table 2, the average densities of converter slags selected as research objects were determined by the following formula [6]:

ρslag = (ω1·ρ1 + ω2·ρ2 +… + ωn·ρn)/100                             (1)

Here: ω1, ω2, and ωn are the respective mass fractions of each component that makes up the slag, %; and ρ1, ρ2, and ρn are their respective individual densities, g/cm3.

Using the formula (1), average densities of converter slags with different magnetite content obtained for the study were determined and these values are listed in Table 3 [7].

Table 3.

Changes in the densities and the amount of copper compounds in the order of increasing magnetite content in the converter slag of “Almalyk Mining and Metallurgical Combine” selected for the experiment

Amount of magnetite, %

Density of slag, g/cm3

Amount of Cu2S, %

Amount of Cu2O, %

Amount of FeS, %

1

19,70

4,09

3,58

2,03

7,49

2

21,98

4,11

3,36

2,27

7,68

3

23,58

4,13

3,20

2,43

7,81

4

25,29

4,15

3,04

2,61

7,95

5

27,20

4,18

2,85

2,81

8,11

6

28,11

4,19

2,76

2,90

8,19

7

29,04

4,20

2,68

3,00

8,27

8

30,90

4,22

2,50

3,19

8,42

9

32,78

4,25

2,32

3,39

8,58

10

34,68

4,27

2,13

3,58

8,74

 

The values in Table 3 indicate that an increase in the amount of magnetite in the slag causes an increase in its overall density [8]. It can be seen from the graph shown in Figure 1 that increasing the amount of magnetite leads to a linear increase in the density of the slag [9].

 

Figure 1. Dependence of slag density on the amount of magnetite in converter slag

 

An overabundance of magnetite in the slag causes several magnetite crystals to coalesce to form a larger magnetite crystal [10]. In this case, the density of large magnetite particles is higher than the density of slag, but close to the density of matte, so they sink to the bottom of the slag layer and accumulate at the boundary of the slag and matte phase separation (Fig. 2).

 

Figure 2. Scheme of formation of magnetite layer between the contact boundary of slag and matte

 

As shown in Figure 2, the magnetite layer formed at the interface between the slag and matte prevents the small matte droplets in the slag phase from passing into the main matte phase below. This increases the mechanical loss of copper with slag [11].

In the diagram in Figure 3, it can be seen that as the amount of magnetite in the slag phase increases, the amount of copper sulfide decreases and the amount of copper oxide increases. This causes an increase in the chemical loss of copper. Because the surface tension of oxidized copper compounds is very different from the surface tension of matte, it is similar to the surface tension of slag and therefore remains in the slag phase. 

The relative density of matte droplets suspended in the slag phase and the corresponding concentrations are presented in Table 4.

 

Figure 3. The dependence of the percentage of the main components affecting the density of the converter slag on the amount of magnetite: 1-Cu2S, 2-Cu2O and 3-FeS

 

Table 4.

Value of density of matte droplets with different composition

Composition of matte droplets, %

The corresponding matte density, g/cm3

Composition of matte droplets, %

The corresponding matte density, g/cm3

Cu2S

FeS

Cu2S

FeS

1

19,167

80,833

5,02592

9

37,304

62,696

5,201849

2

21,66

78,34

5,050102

10

39,399

60,601

5,22217

3

24,083

75,917

5,073605

11

41,356

58,644

5,241153

4

26,394

73,606

5,096022

12

42,689

57,311

5,254083

5

28,689

71,311

5,118283

13

43,953

56,047

5,266344

6

30,922

69,078

5,139943

14

45,207

54,793

5,278508

7

33,095

66,905

5,161022

15

46,475

53,525

5,290808

8

35,242

64,758

5,181847

 

 

 

 

 

Figure 4. Changes in the density of the matte with increasing copper content in the matte

 

From the values in Table 4 and the graph in Figure 4, it can be seen that the more copper content the matte has, the higher its density. For example, when the content of copper in matte reached 37.18%, its density reached a maximum of 5.29 g/cm3.

 

References:

  1. Khojiev Sh.T., Matkarimov S.T., Narkulova E.T., Matkarimov Z.T., Yuldasheva N.S. The Technology for the Reduction of Metal Oxides Using Waste Polyethylene Materials // Conference proceedings of “Metal 2020 29th International Conference on Metallurgy and Materials”, Czech, May 20 – 22, 2020. – P. 971-978.
  2. Alamova G.K., Khojiev Sh.T., Okhunova R.K. Current State Of Copper Smelting Slags And Their Processing: A Review // Central Asian Journal of Literature, Philosophy and Culture. – Spain, 2021. – Vol.2, Issue 2. – P. 49-55.       
  3. Alamova G.Kh., Khojiev Sh.T., Okhunova R.Kh. Comparative Estimation of the Efficiency of Various Materials in the Reduction of Magnetite in Slag Melt // International Journal for Innovative Engineering and Management Research. – India, 2021. – Vol.10, Issue 3. – P. 191-196.
  4. Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. – India, February 2019. – Vol.6, Issue 2. – P. 8094 – 8099.
  5. Khojiev Sh.T., Yusupkhodjaev A.A., Rakhmonaliev M., Imomnazarov O.O’. Research for Reduction of Magnetite after Converting // Kompozitsion materiallar. – Toshkent, 2019. – № 4. – C. 54 – 55.
  6. Matkarimov S.T., Yusupkhodjaev A.A., Khojiev Sh.T., Berdiyarov B.T., Matkarimov Z.T. Technology for the Complex Recycling Slags of Copper Production // Journal of Critical Reviews. – Malaysia, April 2020. – Vol.7, Issue 5. – P. 214 – 220.
  7. Khojiev Sh., Berdiyarov B., Mirsaotov S. Reduction of Copper and Iron Oxide Mixture with Local Reducing Gases // Acta of Turin Polytechnic University in Tashkent. – Tashkent, 2020. – Vol.10, Issue 4. – P. 7–17.
  8. Khojiev Sh.T., Nuraliev O.U., Berdiyarov B.T., Matkarimov S.T., Akramov O‘.A. Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки. – Москва, 2021. – № 3. – C. 60-64.
  9. Юсупходжаев А.А., Хожиев Ш.Т., Акрамов У.А. Использование нетрадиционных восстановителей для расширения ресурсной базы ОАО «Узметкомбинат» // Черные металлы. – Москва, 2021. – № 4. – С. 4 – 8.
  10. Berdiyarov B.T., Khojiev Sh.T. Thermodynamic analysis of reduction of oxidized copper compounds in a slag phase // Kompozitsion materiallar. –Toshkent, 2021. – № 4. – С. 39 – 43.
  11. Хожиев Ш.Т., Бердияров Б.Т., Мухаметджанова Ш.А., Нематиллаев А.И. Некоторые термодинамические аспекты карботермических реакций в системе Fe-Cu-O-C // Ozbekiston kimyo jurnali. – Toshkent, 2021, – №6. – C. 3 – 13.
Информация об авторах

Doctor of Technical Sciences, Professor, Deputy Chief Engineer for Science, JSC "AMMC", Uzbekistan, Almalyk

д-р. техн. наук, профессор, заместитель главного инженера по науке АО «АГМК», Узбекистан, г. Алмалык

Associate professor of “Metallurgy” department, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

и.о. доц. кафедры Металлургия, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Associate professor of “Metallurgy” department, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

и.о. доцент кафедры «Металлургия», PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Student of master course of department of Metallurgy, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

магистрант кафедры Металлургии, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top