RESEARCH ISSUES OF OPTOELECTRONIC NONLINEAR CIRCUITS IN ELECTRICAL ENGINEERING

ВОПРОСЫ ИССЛЕДОВАНИЯ ОПТОЭЛЕКТРОННЫХ НЕЛИНЕЙНЫХ ЦЕПЕЙ В ЭЛЕКТРОТЕХНИКЕ
Karimov R.C. Xushvaqtov D.S.
Цитировать:
Karimov R.C., Xushvaqtov D.S. RESEARCH ISSUES OF OPTOELECTRONIC NONLINEAR CIRCUITS IN ELECTRICAL ENGINEERING // Universum: технические науки : электрон. научн. журн. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14414 (дата обращения: 24.11.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2022.103.10.14414

 

ABSTRACT

This article discusses the use of discrete control systems in all areas of the economy, carried out on the basis of contactless optoelectronic circuits. The analysis of the properties and characteristics of optoelectronic semiconductor devices and the creation on their basis of a non-contact static single-phase AC switch.

АННОТАЦИЯ

В данной статье рассматривается вопросы использования дискретных систем управления во всех областях народного хозяйства, осуществляющихся на базе бесконтактных оптоэлектронных цепей. Проводиться анализ свойств и особенностей оптоэлектронных полупроводниковых приборов и создания на их базе бесконтактного статического однофазного выключателя переменного тока.

 

Keywords: optocoupler, optoelectronic integrated circuit, galvanic isolation, contactless optoelectronic flail.

Ключевые слова: оптопара, оптоэлектронная интегральная микросхема, гальванический развязка, бесконтактное оптоэлектронное цеп.

 

The development of optocoupler technology has confidently entered the stage of mass industrial production. Optocouplers are increasingly being used in electronic equipment due to their undeniable advantages associated with the fact that the use of optocouplers allows electrical decoupling of the power circuit and control circuits without the use of additional means. An optocoupler is an optoelectronic semiconductor device containing a source and receiver of optical radiation, which are optically and structurally interconnected. For an optocoupler, both the input and output parameter is an electrical signal. A feature of optocouplers is the absence of galvanic coupling between input and output signals. The emitter of an optocoupler can be a light emitting or infrared diode, an electric light bulb, or a semiconductor laser. As an optocoupler receiver, photoelectric devices are used: photoresistors, photodiodes, phototransistors, photothyristors. Optocouplers allow you to solve the same problems as individual pairs of emitter - photodetector, however, in practice, they are usually more convenient, since they have already optimally matched the characteristics of the emitter and photodetector and their relative position [1, 20-21].

Only optocouplers are widely used, which have a direct optical connection from the emitter to the photodetector and, as a rule, all types of electrical connection between these elements are excluded.

Optocoupler technology is divided into two groups of devices [2-6, 20-21]:

  • optocoupler, (elementary optocoupler) consisting of an emitting and photo receiving element;
  • an optoelectronic integrated circuit consisting of one or more optocouplers and one or more matching or amplifying devices electrically connected to them.

By design, optocouplers are usually no different from semiconductor devices and integrated circuits. Optocouplers and optoelectronic microcircuits are devices with electrical input and output signals, characterized in that inside them the connection between input and output is carried out using light signals [4-5, 7-9].

Consider the main distinguishing features of optocouplers:

  • the possibility of providing an ideal electrical (galvanic) isolation between the input and output;
  • low value of control currents, providing a reduction in power consumption by the control system;
  • the possibility of transmitting via an optocoupler circuit, both a pulse signal and a constant component, and others.

The capabilities of the optocoupler as an element of galvanic isolation are characterized by the maximum voltage and decoupling resistance Uden, Rden, as well as the through capacitance Сden. As already noted, optocouplers are mainly used as elements of galvanic isolation: for connecting equipment blocks between which there is a significant potential difference, that is, between the power unit and their control system. Another major area of application for optocouplers is the optical, non-contact control of high-current and high-voltage circuits [2-5, 8-11].

According to the general classification of electronic products, optocouplers belong to the class of semiconductor devices, and optocoupler microcircuits belong to the class of hybrid integrated circuits. Optocouplers are divided into diode, thyristor and transistor, and optocoupler microcircuits are based on one of the listed optocouplers. The family of output current-voltage characteristics of thyristor optocouplers are similar to the current-voltage characteristics of conventional thyristors. The family parameter is the input current through the emitting diode. At a certain value of the input current, the characteristic is “rectified”, which corresponds to the on state of the photothyristor. The turn-on time of the optocoupler depends on the input current. When thyristor optocouplers operate in a pulsed mode, with an increase in the amplitude of the control pulse, it is possible to achieve a significant reduction in the turn-on time, but at the same time, an increase in the turn-off time by 20 ... 30% is observed [1-4, 12-13].

It is most expedient to use thyristor optocouplers for galvanic isolation of control logic circuits from high-voltage circuits of high-power loads, for shapers of powerful pulses for controlling high-current thyristors, including symmetrical ones that switch the load in an alternating current network, for secondary power supply protection devices [1-4, 14].

Complex automation of production processes requires the introduction of modern discrete control systems in all areas of the national economy, accompanied by the improvement of electrical and electronic devices that provide high reliability, speed, ease of maintenance and ability to work in polluted environments. All this can be done on the basis of non-contact optoelectronic circuits.

Consider the principle of building an AC switch based on a thyristor optocoupler, thyristor and semiconductor diodes. The use of optocouplers in the control circuit of power thyristors allows you to adjust their operation mode [3-5, 15].

In Fig.1. shows a diagram of a non-contact static single-phase AC switch. The switch contains one thyristor VT, which is included in the diagonal of the VD1-VD4 bridge from the side of the rectified current. The bridge is connected to the AC voltage source in series with the load Rload [4-5, 16-18].

 

Figure 1. Scheme of a non-contact single-phase switch

 

To turn on the load in the network, it is necessary to apply a positive DC pulse to the control electrode of the power thyristor. In this case, the thyristor will be in a conducting state during the entire period of the alternating voltage and both half-waves of the alternating current flow through the load. One half-wave of current passes through the circuit Rload, VD1, VT, VD3, the second half-wave through the circuit VD2, VT, VD4, Rload. When the control signal is removed, the thyristor is locked and the load is disconnected from the network. To control the state of the power thyristor, a thyristor optocoupler VU is used, and the diode circuit of the optocoupler is connected through a limiting resistor to the capacitor plates, which is connected to the network through a semiconductor diode. The voltage on the capacitance in such a circuit remains constant for the entire period of the input voltage [4-5, 19-24].

When the toggle switch is open, the thyristor control circuit is contactlessly disconnected and the load is disconnected from the network. The function of a toggle switch is usually performed by an electrical, electromechanical or mechanical device. In the first case, it can be a low-power key electronic device with a sensor that is triggered by voltage, light, temperature, pressure, etc. Thus, switching of significant power in the load is carried out by a low-power signal.

 

References:

  1. Analysis of voltage stabilizers and non-contact relays in power supply systems / R.Karimov, M.Bobojanov // E3S Web of Conferences. – 2020 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601162
  2. A.M.Burkhankhodzhayev, R.Ch.Karimov. Research of nonlinear electric chains with two and more nonlinear elements in systems power supply / International Scientific and Practical Conf. World science. – 2017, – Т.1. – №1(17). – P.49-52.
  3. Development and experimental study of circuits of contactless device for automation of compensation of reactive power of capacitor batteries / R.Ch.Karimov, M.K.Bobojanov, and others // E3S Web of Conferences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907012
  4. Controlled switching circuits based on non-linear resistive elements / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901039
  5. E.Usmanov, E.Kh.Abduraimov, R.Ch.Karimov. Using proximity relays to improve power quality // "Bulletin of TSTU", Tashkent, – 2012, – №3-4, – P.48-51.
  6. Experimental analysis of a prototype voltage stabilizer using an optoelectronic proximity voltage relay / R.Karimov, and ofters // Journal of Physics: Conf. Series. – 2021 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1742- 6596/2094/5/052042
  7. Modeling of kinematics and kinetostatics of planetary-lever mechanism / R.Karimov, and others // IOP Conference Series: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757-899X/883/1/012129
  8. M.Sadullaev, M.Bobojanov, R.Ch.Karimov. Creation and experimental study of a contactless device for automatic regulation of capacitor batteries power // Journal "Problems of Energy and Soerces Saving", Tashkent, – 2021, – №1, – P.97-106.
  9. M.U.Idriskhodzhaeva, R.Ch.Karimov. Research stabilized secondary power sources and used in electroplating-based power supply systems // International Scientific and Practical Conf. World science. – 2017, – Т.1. – №3(19), – P.49-50.
  10. M.K.Bobojanov, E.G.Usmanov, E.Abduraimov, R.Ch.Karimov. Resistive time delay switches // European Science Review. – 2018, №1-2, – P.210-212
  11. Non-contact controlled voltage stabilizer for power supply of household consumers / R.Karimov, and others // IOP Conf. Ser.: Materials Sci. and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757-899X/883/1/012120
  12. New solutions for controlled compensating devices / R.Karimov, Sh.Dzhuraev, and others // E3S Web of Conferences. – 2021 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202128907021
  13. Non-contact voltage relay for switching windings of a boost transformer / R.Karimov, and others // E3S Web of Conferences. – 2019 / [Электронный ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/201913901079
  14. Rasulov A.N., Karimov R.Ch. The Contactless Relay of Tension in System of Power Supply // EESJ. – 2015. – №4, – P.174-178.
  15. Reliability indicators of stabilizing devices in the agriculture electrical supply system / R.Karimov, and others // IOP Conf. Ser.: Materials Science and Engineering. – 2020 / [Эл. ресурс]. – Режим доступа: doi:10.1088/1757-899X/883/1/012142
  16. R.Ch.Karimov. Improvement of capacitor battery power regulation circuit based on contactless switching devices // Journal "Problems of Energy and Soerces Saving", Tashkent, – 2021, – №2, – P.145-154. https://t.me/uzenergysaving
  17. Rasulov A.N., Karimov R.Ch. The Contactless Thyristor Device for Inclusion and Shutdown of Condenser Installations in System of Power Supply // EESJ. – 2015. – №4, – P.179-183.
  18. R.Karimov. Using optoelectronic noncontact voltage relay in electrical supply systems // Journal “Technical science and innovation”, Tashkent, – 2019, – №2.
  19. Study of the state of the issue of increasing the quality of electric energy in the power supply systems / R.Karimov // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202021601163
  20. Study of the efficiency of conveyors of mining transport systems of mining complexes / R.Ch.Karimov, and others // E3S Web of Conferences. – 2020 / [Эл. ресурс]. – Режим доступа: https://doi.org/10.1051/e3sconf/202017703023
  21. The state standard of Uzbekistan is O’zDSt 1050:2004. – №05-02 of January 30, 2004, – P.53.
  22. The state standard of Uzbekistan O’zDSt 1044:2003. – №05-19 of July 18, 2003, – P.27.
  23. Каримов Р.Ч. Обзор стабилизатора напряжения на основе тиристоров в системах электроснабжения // Universum: технические науки : электрон. научн. журн. 2021. 9(90). URL: https://7universum.com/ru/tech/archive/item/12285
  24. Икромов М.М., Ибайдуллаев М.Я., Каримов Р.Ч. Обзор стабилизатора напряжения на основе транзисторов в системах электроснабжения // Universum: технические науки: электроный научный журнал. 2021. 4(85). URL: https://7universum.com/ru/tech/archive/item/11595
Информация об авторах

Doctor of Philosophy in Technical Sciences (PhD), assistant professor, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent

д-р филос. и техн. наук (PhD), доц.,  Ташкентский государственный технический университет  имени Ислама Каримова, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Technical University named after Islam Karimov, Republic Uzbekistan, Tashkent

ассистент, Ташкентский государственный технический университет имени Ислама Каримова, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top