ALGORITHM AND METHOD FOR IMPLEMENTATION OF TRACTION CALCULATION FOR DIESEL LOCOMOTIVES AND ELECTRIC LOCOMOTIVES AT THE RAILWAY SECTION

АЛГОРИТМ И МЕТОДИКА РЕАЛИЗАЦИИ ТЯГОВОГО РАСЧЁТА ДЛЯ ЛОКОМОТИВОВ ДИЗЕЛЬНОЙ И ЭЛЕКТРИЧЕСКОЙ ТЯГИ НА УЧАСТКЕ ЖЕЛЕЗНОЙ ДОРОГИ
Цитировать:
ALGORITHM AND METHOD FOR IMPLEMENTATION OF TRACTION CALCULATION FOR DIESEL LOCOMOTIVES AND ELECTRIC LOCOMOTIVES AT THE RAILWAY SECTION // Universum: технические науки : электрон. научн. журн. Ablyalimov O.S. [и др.]. 2022. 10(103). URL: https://7universum.com/ru/tech/archive/item/14355 (дата обращения: 22.02.2024).
Прочитать статью:

 

ABSTRACT

An algorithm and methodology for performing traction calculation of electric and diesel locomotives on a given virtual or real section of the railway is proposed, based on the characteristics of the material and technical base and various conditions for organizing the transportation of goods in operation. It is recommended to justify the efficiency of electric and diesel locomotives on a virtual and, identical to it, real section of the railway, based on the kinematic parameters of the movement of a freight train and the magnitude of the energy efficiency indicators of the transportation work of these locomotives under operating conditions.

АННОТАЦИЯ

Предложен алгоритм и методика выполнения тягового расчета локомотивов электрической и дизельной тяги на заданном виртуальном или реальном участке железной дороги, исходя из особенностей материально-технической базы и различных условий организации перевозки грузов в эксплуатации. Эффективность электровозов и тепловозов рекомендуется обосновывать на виртуальном и идентичном ему реальном участке железной дороги, исходя из кинематических параметров движения грузового поезда и величины показателей энергетической эффективности перевозочной работы этих локомотивов в условиях эксплуатации.

 

Keywords: analysis, algorithm, freight train, rail transportation, diesel locomotive, electric locomotive, railway, section, method, transportation work, cargo.

Ключевые слова: анализ, алгоритм, грузовой поезд, железнодорожные перевозки, тепловоз, электровоз, железная дорога, участок, методика, перевозочная работа, груз.

 

Today, the main traction electric and diesel rolling stock - these are freight electric locomotives VL80S and diesel locomotives of the TE10M, UzTE16M series in various sectional designs, make up approximately ninety percent of the entire operating locomotive fleet of "O'zbekiston temir yo'llari" JSC.

Studying the conditions and determining the parameters of the main operating indicators of three-section mainline (train) freight locomotives 3VL80S, 3TE10M and UzTE16M3 on a given virtual or real section of the railway with the development of recommendations and measures aimed at finding ways and reserves to improve the efficiency of using the locomotive fleet is a primary and urgent task railway industry of Uzbekistan.

The solution of this important task for various conditions of organizing operational activities on sections of the Uzbek railways of different degrees of difficulty and complexity will make it possible to use the transportation potential of railway transport and its locomotive fleet, in particular, even more efficiently.

The above can be implemented with great success by performing a traction calculation for electric and diesel traction locomotives, based on the methods and methods [1,5,6] of the theory of locomotive traction and various conditions for organizing rail transportation of goods, taking into account railway sections of different degrees of difficulty and complexity.

Below we present the algorithm and initial information for performing traction calculation on a given section of the account.

In the general case, traction calculations are performed according to the recommendations [1,5,6] and the following algorithm for their implementation [2]:

  • choose the parameters (characteristics) of the factors of the state of the material and technical base and the conditions for organizing the transportation work of locomotives in a given (accepted) section of the account;
  • develop models for driving a freight train of various masses, organized by locomotives without stops and with stops at intermediate stations, sidings and separate points;
  • to solve differential equations of movement of a freight train by one of the widely known methods, using, for example, a graphical method to determine the speed and time of movement of a train on a given (accepted) section of the railway;
  • perform traction calculations on a given section of the railway and the results are processed by known methods of mathematical statistics with their subsequent analysis;
  • determine the values of the kinematic parameters of the movement of a freight train and the parameters of the main fuel and energy indicators of the efficiency of the use of locomotives in quantitative and monetary terms;
  • perform "construction" of regression equations (analytical dependencies) designed to determine the numerical values of the kinematic and energy parameters of the main indicators of the fuel and energy efficiency of the use of locomotives for any mass of a freight train using the spreadsheet Microsoft Office Excel.

A virtual section of the railway A - C is given, consisting of two hauls A - B and B - C, the straightened track profile of which is presented in Table. 1.

Table 1.

Straightened track profile of a virtual section A–C of a railway

Item number.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Element steepness, ‰

-1,5

-1,42

+1,76

+6,5

+0,99

-10,0

-1,33

+1,0

+4,8

0

-3,0

-2,28

0

+1,5

+3,5

+0,9

0

-

Element length

S, m

1700

4800

2800

7000

2100

1400

1800

1600

1500

1500

7200

2500

2500

1600

900

3200

1800

-

 

The straightened profile of the link track of the railway section with a length of 45.9 kilometers is presented in Table. 1, consisting of two sections A-B and B-C, contains 17 elements. Thirteen of these elements with steepness of rises (slopes) in the range from +3.0‰ to -3.0‰, including sites i = 0, make up approximately 76.47 percent of the total length of the section under consideration, which, according to the nature of the track profile, classifies it as "plain" [3] and refers to the first type.

Based on the analysis of the path profile, it can be seen that the most "heavy" element is 4, which is taken as the calculated ascent with a length of Sр = 7000m and a steepness of iр = +6.5‰, and element 6, which has a slope of iсп = -10.0‰ and a length of Sсп = 1400m - guiding descent. Freight trains plying on this section of the railway consist of fifty four-axle cars on rolling bearings (rollers) with train mass differentiation by ΔQ = 500t in the range from Q1 = 2500t to Q3 = 3500t. There are no permanent or temporary slowdown warnings. Cast iron brake pads - υр = 0.33 kN/kN, and the length of the receiving-departure path lпоп = 1050 m.

The movement of freight trains on a given virtual flat section of the railway is organized by three-section mainline (train) freight locomotives - 3VL80S electric locomotives and 3TE10M, UzTE16M3 diesel locomotives with and without stops at an intermediate station.

Below is a methodology for performing traction calculations for locomotives diesel traction and electric traction.

To implement this technique, mathematical models for driving a freight train by 3VL80S electric locomotives, 3TE10M and UzTE16M3 diesel locomotives are compiled, tables are calculated and diagrams of the specific resultant forces of the train are plotted, and, based on the above recommendations [5,6], current curves are plotted (electric traction locomotives) , the speed of movement and the time of the train in a given section of the account.

In table. 2 - table. 5 shows the numerical values of the specific resultant (accelerating and compensating) forces of a freight train of various train masses (Q = 2500t ... 3500t) and the same number of axles m = 200 axles in traction, idling and braking modes.

Table 2.

Specific resultant forces of the train for the traction mode, electric locomotive 3VL80S

v

Fк

w׳0

Q1 = 2500 t

Q2 = 3000 t

Q3 = 3500 t

w"0

w0

fк -w0

w"0

w0

fк -w0

w"0

w0

fк -w0

km/h

N

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

1

2

3

4

5

6

7

8

9

10

11

12

0

931950

1,90

0,94

1,04

33,03

0,90

 0,99

 27,90

0,87

0,95

 24,13

4,5

931950

1,95

0,98

1,08

32,99

0,93

 1,02

 27,87

0,90

0,98

 24,10

10

877014

2,03

1,04

1,14

30,93

0,99

 1,08

 26,11

0,65

1,03

 22,57

20

824040

2,22

1,18

1,29

28,84

1,10

 1,20

 24,35

1,05

1,14

 21,04

30

788724

2,47

1,36

1,47

27,37

1,25

 1,36

 23,09

1,18

1,28

 19,94

40

759294

2,78

1,58

1,70

26,18

1,43

 1,55

 21,99

1,34

1,45

 18,98

43,5

753408

2,90

1,66

1,79

25,76

1,50

 1,62

 21,73

1,39

1,50

 18,77

50

735750

3,15

1,85

1,98

24,92

1,65

 1,78

 21,03

1,52

1,64

 18,16

56,5

723978

3,42

2,03

2,17

24,30

1,81

 1,95

 20,50

1,65

1,78

 17,70

60

635688

3,58

2,14

2,29

20,95

1,90

 2,05

 17,66

1,74

1,88

 15,23

70

444393

4,07

2,48

2,64

13,61

2,19

 2,35

 11,43

1,98

2,14

 9,92

80

326673

4,62

2,87

3,05

8,89

2,50

 2,69

 7,44

2,25

2,43

 6,36

90

254570

5,23

3,28

3,48

5,83

2,86

 3,07

 4,82

2,54

2,74

 4,11

100

201596

5,90

3,74

3,96

3,41

3,24

 3,47

 2,78

2,88

3,11

 2,32

 

Table 3.

Specific resultant forces of the train for the idling mode and braking, electric locomotive 3VL80S

v

wх

φкp

bт

Q1 = 2500 t

Q2 = 3000 t

Q3 = 3500 t

wох

wох+0,5bт

wох+bт

wох

wох+0,5bт

wох+bт

wох

wох+0,5bт

wох+bт

km/h

Н/кН

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

1

2

3

4

5

6

7

8

9

10

11

12

13

0

 2,40

0,270

89,10

1,09

 45,64

90,19

1,03

  45,58

90,13

0,99

45,54

 90,09

10

 2,54

1,198

65,34

1,19

 33,86

65,53

1,13

  33,80

66,47

1,07

33,74

 66,41

20

 2,76

0,162

53,46

1,34

 28,07

54,80

1,25

  27,98

54,71

1,18

27,91

 54,64

30

 3,05

0,140

46,20

1,53

 24,63

47,73

1,41

 24,51

47,61

1,32

24,42

 47,52

40

 3,40

0,126

41,58

1,77

 22,56

43,35

1,60

  22,39

43,18

1,50

22,29

 43,08

50

 3,83

0,116

38,28

2,05

 21,19

40,33

1,84

  20,98

40,12

1,70

20,84

  39,98

60

 4,32

0,108

35,64

2,37

 20,19

38,01

2,11

  19,93

37,75

1,94

19,76

 37,58

70

 4,89

0,102

33,66

2,73

 19,56

36,39

2,43

  19,26

36,09

2,20

19,03

 35,86

80

 5,52

0,097

32,01

3,14

 19,14

35,15

2,76

  18,76

34,77

2,50

18,51

 34,51

90

 6,23

0,093

30,69

3,58

 18,93

34,27

3,16

  18,51

33,85

2,82

18,17

 33,51

100

 7,00

0,090

29,70

4,07

 18,92

33,77

3,57

  18,42

33,27

3,19

18,04

 32,89

 

Table 4.

The specific resultant forces of the train for the traction mode, diesel traction locomotives

v

Fк

w׳0

Q1 = 2500 t

Q1 = 3000 t

Q1 = 3500 t

w"0

w0

fк -w0

w"0

w0

fк -w0

w"0

w0

fк -w0

km/h

N

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

1

2

3

4

5

6

7

8

9

10

11

12

0

1360000

1,90

0,94

1,04

46,50

0,87

 0,99

 39,65

0,87

0,95

 34,44

10

1168000

2,03

1,04

1,08

39,68

0,95

 1,02

 33,86

0,94

0,98

 29,36

13

1125000

2,08

1,08

1,14

38,13

0,97

 1,02

 32,51

0,97

0,98

 29,21

20

 839000

2,22

1,18

1,29

28,02

1,05

 1,20

 23,89

1,04

1,14

 20,68

30

 600000

2,47

1,36

1,47

19,47

1,18

 1,36

16,60

1,17

1,28

 14,32

40

 470000

2,78

1,58

1,70

14,69

1,34

 1,55

 12,54

1,33

1,45

 10,76

50

 375000

3,15

1,84

1,79

11,02

1,53

 1,78

 9,49

1,51

1,64

 8,06

60

 312000

3,58

2,14

1,98

8,57

1,74

 2,05

 7,36

1,73

1,88

 6,20

70

 273000

4,07

2,48

2,17

6,84

1,99

 2,35

 5,92

1,97

2,14

 4,92

80

 235000

4,62

2,86

2,29

5,11

2,26

 2,69

 4,47

2,24

2,43

 3,62

90

 21400

5,23

3,28

2,64

3,93

2,57

 3,50

 4,82

2,54

2,74

 2,75

100

 194000

5,90

3,74

3,05

2,74

2,90

 2,53

 2,78

2,87

3,11

 1,86

 

Table 5.

Specific resultant forces of the train for idling and braking, diesel traction locomotives

v

wх

φкp

bт

Q1 = 2500 t

Q2 = 3000 t

Q3 = 3500 t

wох

wох+0,5bт

wох+bт

wох

wох+0,5bт

wох+bт

wох

wох+0,5bт

wох+bт

km/h

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

N/kN

1

2

3

4

5

6

7

8

9

10

11

12

13

0

 2,40

0,270

89,10

1,15

 45,69

90,25

1,06

  45,61

90,16

1,03

45,58

 90,13

10

 2,54

1,198

65,34

1,25

 33,92

66,59

1,13

  33,80

66,47

1,11

33,70

 66,45

20

 2,76

0,162

53,46

1,40

 28,13

54,86

1,23

  27,96

54,69

1,22

27,76

 54,68

30

 3,05

0,140

46,20

1,60

 24,70

47,80

1,37

 24,54

47,70

1,37

24,13

 47,57

40

 3,40

0,126

41,58

1,84

 22,63

43,42

1,54

  23,33

43,12

1,55

21,82

 43,13

50

 3,83

0,116

38,28

2,12

 21,26

40,40

1,74

  20,84

39,93

1,76

20,17

  40,04

60

 4,32

0,108

35,64

2,45

 20,27

38,09

1,98

  19,80

37,62

2,00

18,85

 37,64

70

 4,89

0,102

33,66

2,82

 19,65

36,48

2,26

  19,09

35,92

2,28

17,86

 35,94

80

 5,52

0,097

32,01

3,24

 19,24

35,25

2,56

  18,60

34,64

2,59

17,04

 34,60

90

 6,23

0,093

30,69

3,70

 19,04

34,39

2,90

  18,29

33,68

2,93

16,38

 33,61

100

 7,00

0,090

29,70

4,20

 19,01

33,90

3,28

  18,13

32,98

3,31

15,88

 33,01

 

According to table. 2 - table. 5 diagrams of the mentioned resultant forces are constructed for the studied three-section mainline (train) freight locomotives.

All of the above constructions are carried out on graph paper, while strictly selected and verified scales of graphic construction are observed, based on the recommendations [7] (Rules for traction calculations for train work).

On fig. 1 and fig. 2 shows fragments of dependencies V(S), t(S) and Ida(S), built by us taking into account the given characteristics of the material and technical base and the conditions for organizing the transport operation of diesel locomotives 3TE10M, UzTE16M3 and electric locomotives 3VL80S on one of the given virtual flat sections of the railway .

 

Figure 1. Fragment of traction calculation for diesel traction locomotives at an intermediate station

 

On fig. 1 and fig. 2 marked: A, B, C - respectively, the station of departure, intermediate and arrival (terminal); V=f(S) and t=f(S) – curves of the speed and travel time of the train per passage, without stopping at the intermediate station B; V''=f(S) and t''=f(S) are the curves of the speed and travel time of the train during the period of its acceleration when starting off at the intermediate station B; t'=f(S) and t2=f(S) – respectively, the time curves of the train when stopping and accelerating through station B; SBзам and ∆tBзам are the deceleration path and time when braking at intermediate station B; SBразг and ∆tBразг are the path and acceleration time in the process of starting the train from its place at the intermediate station B; t1 and t2 are, respectively, the time for the train to pass through intermediate station B before the transition without stopping (t1) and after stopping (t2); TD and TO - respectively, the brakes are pressed and the brakes are released.

 

Figure. 2. Fragment of traction calculation of traction diesel locomotives at the end station

 

Braking path SBзам, SСзам - the distance that the train travels from the start of braking (transfer of the driver's crane handle to the braking position) to the complete stop of the train.

The path of acceleration SBразг is the distance traveled by the train from the beginning of the launch at the intermediate station to the moment of "surge" of the non-stop movement of the train.

Deceleration time ∆tBзам, ∆tCзам when the train brakes before stopping at the intermediate and arrival stations - the time of the train during which it stops (stops).

The acceleration time ∆tB acceleration in the process of starting the train from its place at the intermediate station is the time of the train's movement, during which it will "catch up" with the non-stop movement.

Freight train movement time for deceleration - acceleration can be determined analytically, according to a simple formula (see Fig. 1 - ∆tBразг = t2 - t1) - that is, by subtracting the time of non-stop train movement from the time of train movement with stops. Or, thanks to the graphical method, based on the already constructed time curves of the movement of a freight train, as shown in Fig. 1 and fig. 2 - for the train deceleration time or as indicated in [4] and in fig. 2 - during the acceleration of the train.

To analyze the result of the above studies, as a justification criterion, the kinematic parameters of the movement of freight trains and energy indicators of the efficiency of the use of the locomotive fleet under various modes of movement of locomotives were used in the organization of railway transportation of various goods with and without stops at intermediate stations, separate points and sidings were taken.

Thus, the use of the above methods, taking into account the analysis of the initial data and the algorithm for performing traction calculations, will allow us to further implement theoretical studies related to solving problems of driving freight trains by three-section mainline (train) freight electric locomotives 3VL80S and diesel locomotives 3TE10M, UzTE16M3 on a given, virtual or real, section of the railway.

 

Reference:

  1. Ablyalimov O. S. Fundamentals of locomotive management [Text] / O. S. Ablyalimov, E. S. Ushakov // Textbook for professional colleges of railway transport. - Tashkent: "Davr", 2012. - 392 p.
  2. Ablyalimov O.S. To the operation of 3VL80S electric locomotives on the flat section of the railway [Text] / O.S. Ablyalimov // Scientific journal "Bulletin of ISTU" / Irkutsk state. tech. un-t. - Irkutsk, 2019. V. 22. No. 6. - P. 50 - 67.
  3. Ablyalimov O. S. Evaluation of the efficiency of the transportation work of electric locomotives 3VL80S on the section Kattakurgan - Navoi of the Uzbek railway [Text] / O. S. Ablyalimov // International information and analytical journal "Crede experto: transport, society, education, language" / Branch of the Moscow State tech. University of Civil Aviation. - Irkutsk, 2018. No. 3 - S. 54 - 62.
  4. Ablyalimov O. S. Graphical method for calculating the travel time of a train for acceleration - deceleration [Text] / O. S. Ablyalimov, I. O. Tashbekov, O. B. Nigmatov // Republic of Ilmiy - AmaliyAnzhumani “Oliyvaurtamahsus , kasb - khunarta'liminingўzaroҳamkorlikalokalari: yutukvamuammolar". / Tashkent state. UniversityofEconomics. - Tashkent: TDIU, 2017. - P. 66 - 68.
  5. Deev V. V. Traction of trains [Text] / V. V. Deev, G. A. Ilyin, G. S. Afonin // Textbook for universities. - M.: Transport, 1987. - 264 p.
  6. Kuzmich V. D. Theory of locomotive traction [Text] / V. D Kuzmich, V. S. Rudnev, S. Ya. Frenkel // Textbook for universities of railway transport. - M .: Route, 2005. - 448 p.
  7. Rules for traction calculations for train work. - M .: Transport, 1985. - 287 p.
Информация об авторах

Candidate of Technical Sciences, professor, professor of the chair «Loсomotives and locomotive economy», Tashkent state transpоrt university, Uzbekistan, Tashkent

канд. техн. наук, профессор, профессор кафедры «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Узбекистан, г. Ташкент

Assistant «Loсomotives and locomotive economy» Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

ассистент кафедры «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Candidate of Technical Sciences, аssistant professor of the chair «Materials science and mechanical engineering» Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

канд. техн. наук, доцент кафедры «Материаловедение и машиностроение» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Senior lecturer of the chair«Loсomotives and locomotive еconomy» Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

ст. преподаватель кафедры «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Master, аssistant of the chair«Loсomotives and locomotive еconomy» Tashkent state transpоrt university, Republic of Uzbekistan, Tashkent

магистр, ассистент кафедры «Локомотивы и локомотивное хозяйство» Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top