PhD, Термезский государственный университет, Республика Узбекистан, г. Термез
МОДИФИКАЦИЯ СИНТЕТИЧЕСКИХ ПОЛИМЕРОВ ОЛИГОМЕРНЫМИ АНТИСЕПТИКАМИ И ИССЛЕДОВАНИЕ ИХ СВОЙСТВ
АННОТАЦИЯ
В статье представлено взаимодействие фосфора, азота, серы и других элементов в олигомерах серы, полученных в результате исследований, с образованием стабильных композитов. По результатам испытаний исследуемых олигомеров определяли устойчивость к химическим веществам, нефтепродуктам и воде.
ABSTRACT
The article presents the interaction of phosphorus, nitrogen, sulfur and other elements in sulfur oligomers obtained as a result of research, with the formation of stable composites. According to the test results of the studied oligomers, resistance to chemicals, oil products and water was determined.
Ключевые слова: Сера, РО-1, РО-2, ДГТ-1, ДГТ-2, ДГТ-3 антипирены-антисептики, древесные материалы, сульфат аммония, меламин, уротропин.
Keywords: Sulfur, RO-1, RO-2, DHT-1, DHT-2, DHT-3 fire retardants-antiseptics, wood materials, ammonium sulfate, melamine, urotropine.
Современные нефте- и газоперерабатывающие заводы производят большое количество серы в год, но процесс извлечения серы в процессе добычи и добычи нефти и газа технически сложен, а соединения серы ускоряют коррозию металлов, а смесь различных газов выброс в окружающую среду увеличивает экологический ущерб, в связи с чем предъявляются особые технические требования.
В настоящее время основными потребителями серы являются химическая и шинная промышленность. Также сера широко используется в производстве органических полисульфидов, в основном применяемых в качестве гермитантов. Кроме того, он находит все более широкое применение в органическом синтезе, производстве полимерных композиционных материалов, сельском хозяйстве, бумажной промышленности, антисептиках, защищающих деревянные строительные материалы, медицине и других областях. Следует отметить, что основными отраслями потребления серы являются производство сельскохозяйственной продукции и химическая промышленность [1,2].
На сегодняшний день разработка строительных материалов, устойчивых к физико-химическим воздействиям, является одной из актуальных задач. Ряд проводимых исследований показывает, что в результате добавления в строительные материалы специальных химических веществ усиление конструкции сада позволяет обеспечить стабильность его механических и химико-термических свойств [3].
Полимерные композиционные материалы на основе серы представляют собой особый вид строительных материалов, при их производстве используются все виды технической серы и смеси, получаемые из вторичного сырья. Серосодержащие композиты получают путем смешивания с отвердителями, пластификаторами, стабилизаторами и другими специальными добавками [4].
Из литературы известно, что серные композиционные материалы устойчивы к водной, кислой и щелочной средам, органическим растворителям и нефтепродуктам. Строительные материалы на основе сернистых композитов могут найти широкое применение в строительстве объектов химической промышленности, нефтегазовой отрасли, дорожном строительстве, сельском хозяйстве и других отраслях.
В настоящее время в результате изучения композитов группы серы установлено, что их устойчивость в водной среде зависит от их химического строения.
Тот факт, что композиты, относящиеся к этому типу, воздействуют на водную среду, вызывает изменение их структуры и приводит к ухудшению технических свойств.
Получены олигомеры азотной и серной групп эффективными технологическими методами на основе местного сырья фосфора, азота и серы и определена устойчивость этих олигомеров к органическим растворителям, кислым и щелочным средам (в % по объему) в специальных условиях ( 30°С, 1 месяц) была проведена тестовая работа (таблица 1). В ходе экспериментальных испытаний в лаборатории были приготовлены специальные образцы композитов группы серы той же массы. Затем в химических сосудах одинакового объема готовили органические растворители, растворы кислот и щелочей разной концентрации и проводили экспериментальные испытания.
Таблица 1.
Определение чувствительности олигомера ДГТ-2 с группой серы к различным средам (% по объему)
Среда |
Олигомер с серной группой |
Бензол |
0,7 |
Толуол |
0,08 |
Бензин |
0,05 |
HCI, 50 % |
Влияет |
NaOH, 10% |
0,5 |
NaOH, 5% |
Влияет |
HNO3, 5% |
Влияет |
H2SO4, 5% |
0,1 |
H2SO4, 10% |
Влияет |
Вода (дис.) |
0 |
Композиты серной группы близки по составу к полисульфидным каучукам, оба из которых содержат от 20 до 50% серы и имеют схожие области применения, но могут отличаться друг от друга по физико-химическим и механическим свойствам.
Кроме того, проведены модификации серосодержащих олигомеров марки ДГТ-2 вторичным полиэтиленом и изучена устойчивость полученных продуктов к УФ (ультрафиолетовому излучению). Единственной причиной использования вторичного сырья в данном процессе модификации является получение экологически и экономически эффективного продукта, а так как состав вторичных продуктов состоит из смешанных веществ, то с учетом их устойчивости во внешней среде модификации серо- содержащих олигомеры.
Таблица 2.
Состав герметизирующих и отвердевающих паст
Герметизирующая паста, % |
Укрепляющая паста, % |
РО-2 - 100 Стеарат калций - 5 TiO2 - 10 Эпоксидная смола ЭД-20 - 5 |
MnO2 -80 ДБФ -400 ДФГ -15 Бентонит -90 ПЭПА -100 |
В результате можно наблюдать улучшение механических свойств 1%-ных олигомеров марки ДГТ-2, модифицированных вторичным полиэтиленом. В данном эксперименте изучалось влияние оксида марганца (IV) и ПЭПА на кинетику твердения композитов, полученных модифицированием синтезированных серосодержащих олигомеров (РО-2) эпоксидной смолой. В таблице 2 приведен состав закалочных паст.
По результатам эксперимента изучено влияние свойств наполнителей и скорости твердения на свойства зарубежных герметиков марки АМ-05. При сравнении разработанных герметизирующих паст с зарубежными отвердителями установлено, что герметизирующие и отвердительные пасты равномерно смешиваются и обладают такими же свойствами, как и зарубежные аналоги.
Исследована термостойкость древесных материалов, обработанных серосодержащими составами антипиренов марок РО-1, РО-2, ДГТ-1, ДГТ-2 и ДГТ-3. Кинетика потери массы деревянных материалов, обработанных РО-1, в зависимости от температуры этого процесса представлена на рис. 1. Потеря массы в рассматриваемом интервале температур связана с различными процессами: окислением олигомеров, разложением с выделением летучих веществ и др. На кривой ТГА отмечено, что потеря массы деревянных материалов, обработанных антипиреном РО-1, с повышением температуры, основная часть разрушалась при температуре от 200°С до 300°С. Этот композит потерял 0,5 мг массы при 120°С, что составило 12,6% от общей массы. Из рисунка видно, что потеря массы при 300°С составляет 2,19 мг, что составляет 53,1%. В результате нашего наблюдения за тепловыми процессами также был определен экзотермический эффект при температурах, при которых происходила основная потеря массы, то есть состояние, при котором ДТА переходил с двумя тепловыделениями при температурах 408,4°С и 600°С, было учился.
Можно сделать вывод, что потеря массы древесных материалов, обработанных антипиреном РО-2, составила 0,28 мг (9,6 %) при 132°С. При 350°С наблюдалось разрушение основной части, т.е. потеря массы 1,17 мг, что составляет 39,3% от общей массы (потеря массы 50,0% при 350°С). При температуре 428°С она составила 0,9 мг (30% от общей массы). При температуре 600°С теряется 0,62 мг массы, что составляет 21% от общей массы. Оптико-микроскопический анализ морфологии поверхности олигомера имеет большое значение при изучении деревянных строительных материалов, модифицированных азотными и серосодержащими олигомерными антипиренами-антисептиками, методом электронно-микроскопического анализа. С помощью этого метода можно частично определить, что состав обработанного образца древесины проникает в детали, поглощая антипирены и антисептики, и находится в конструкции.
Электронно-микроскопическим методом проведен анализ олигомеров, образованных серосодержащими олигомерами РО-1, РО-2, ДГТ-1, ДГТ-2 и ДГТ-3 с древесными материалами.
Список литературы:
- Полтораднев М.С., Гребенникова Т.В. и Хисамутдинов Н.Ш. Агрономический эффект от применения нового минерального удобрения, содержащего азот и серу. // Питание растений. Вестник Международного института питания растений при возделывании яровой пшеницы. Питание растений, №3, 2014. С.10-13.
- Aulakh, M.S. and S.S. Malhi. 2004. In A.R. Mosier, J.K. Syers, and J.R. Freney (eds.) Agriculture and the nitrogen cycle: Assessing the impacts of fertilizer use on Food production and the environment. pp. 181-191. Scope no. 65. Island Press, Washington, USA.
- Холбоева А.И., Тураев Х.Х., Нуркулов Ф.Н. Исследование модификациина основе вторичного полиэтилена с фосфор, азот и серосодержащие тиоколовым каучуком // Инновационныое развитие нефтгазовой отралси, современная энергетика и их акуальные проблемы. Международной конференции. Тошкент. 26 май 2020 й. 318 б.
- Холбоева А.И., Тураев Х.Х., Нуркулов Ф.Н. Comprehensive protection of wood with compositions based on nitrogen and sulfur-containing Oligomeric compounds // International journal of materials and chemistry 2020,10(1)5-7 DOI:105923/j.ijmc.20201001.02.