SOME PROBLEMS OF THE THEORY OF LINEARIZATION OF RECEIVING INFORMATION OF A MICROPROCESSOR RECEIVER OF CODE AUTO-LOCKING RAIL CIRCUITS

НЕКОТОРЫЕ ПРОБЛЕМЫ ТЕОРИИ ЛИНЕАРИЗАЦИИ ПРИЕМНОЙ ИНФОРМАЦИИ МИКРОПРОЦЕССОРНОГО ПРИЁМНИКА РЕЛЬЦОВЫХ ЦЕПЕЙ КОДОВОЙ АВТОБЛОКИРОВКИ
Цитировать:
Gayubov T.N., Sadikov A.N., Ubaydullayev S.K. SOME PROBLEMS OF THE THEORY OF LINEARIZATION OF RECEIVING INFORMATION OF A MICROPROCESSOR RECEIVER OF CODE AUTO-LOCKING RAIL CIRCUITS // Universum: технические науки : электрон. научн. журн. 2022. 4(97). URL: https://7universum.com/ru/tech/archive/item/13509 (дата обращения: 22.12.2024).
Прочитать статью:

 

АННОТАЦИЯ

В данной статье рассматривается задача статической линеаризации, состоящая в отыскание способа получения заданного нелинейного преобразования с помощью линейного. В работе пересматривается применение к нелинейным объектам дисперсионной функции с совместно статической и гармонической линеаризацией сравнение полученных результатов с другими методами. Нелинейные модели моделируется в виде различных комбинаций линейных динамических звенев и нелинейных безынерционных элементов.

ABSTRACT

This article discusses the static linearization problem consisting in finding a way to obtain a given non-linear transformation using a linear one. The paper reviews the application of the dispersion function to nonlinear objects with jointly static and harmonic linearization, comparing the results with other methods. Non-linear models are modeled in the form of various combinations of linear dynamic links and non-linear inertialess elements.

 

Ключевые слова: линеаризация, нелинейный, гармонической, дисперсионно, случайный, асимметрично, статистический, корреляционный.

Keywords: linearization, nonlinearity, harmonics, dispersive, random, asymmetrically, statistical, correlation.

 

The task of statistical linearization is to find a way to obtain a given nonlinear change statement using a linear transformation. Its solution is important in the study of complex systems.

Certain methods of statistical linearity based on correlation functions (1) in many respects do not lead to the expected goal in describing linear objects, because they do not satisfy the given level of accuracy of object description (description) in many practical cases [1, 2, 3].

In this connection, the idea of creating another, dispersive function-based method of statistical and harmonic linearization emerged, which is based on conditional moment descriptions (2).

There is a nonlinear object of the following type (appearance)

y=φ(x+v),                                                      (1)

where          y – Is the output signal,

φ – is an arbitrary nonlinearity,

х – random errors,

v – sinusoidal signal, ie:

                                   (2)

                              (3)

where ẋ – is a centralized random function.

The output signal (1) for nonlinearity has the following appearance:

                                     (4)

where Аm, ψ – are constant quantities (signal amplitude and frequency).

If the nonlinearity is not a definite (neodnoznachna), then by presenting the product of the input signal between the arguments we present it in the form of a definite inertial relation [4].

                                 (5)

The method of dispersive linearization (3,4) can be used to linearize the line (1) and relatively general (5). In this case, the statistical characteristics (description) of the nonlinear joint and the statistical coefficients of amplification are periodic functions of time due to the periodic dependence of the input signal on the mathematical expectation time.

                                (6)

On the other hand, when using harmonic linearization, the harmonic coefficients of amplification become a random value due to a random component in the input signal. In this case, co-dispersion and harmonic linearization should be used, i.e. it is expedient to replace the nonlinearity with an approximate dependence on the linearity with respect to the sinusoidal and centered random component of the input signal. In this case it is possible to apply first the variance linearization, and then the harmonic type, after which they must be replaced [5, 6, 7].

Carrying out the dispersion linearization of nonlinearity (1), we present it in the following form:

     (7)

It is known from formula (7) that φ0 and k1 are periodic functions of time. Suppose that the mathematical expectation of a random signal тх(t), its variance Dx(t), and the variance function θxx(t,s) change much more slowly to make them constant over the period of the sinusoidal part of the input signal [8, 9]. We apply harmonic linearization (4) to the functions φ0 and k1, i.e. by placing them in the Fure series, leaving only the constant component and the first harmonic of the function

 

                                        (8)

where

φ0 = d                   (9)

a = d                 (10)

In order to prevent the occurrence of nonlinear terms in the propagation of the function k1, we leave only the constant component:

.        (11)

As a result, we have the following apparent approximate linerization:

y(t) ≈ φ0 + aAmsin + k1*ẋ(t).                                     (12)

Using the asymmetry of the variance function, we apply different options and coefficients of amplification of k1 depending on the nonlinearity [10], i.e.:

k1=0yx·[0xx]-1, k1=0yy·[0xx]-1, k1=0xy·[0xx]                            (13)

0уx (t,s) = M {{M {yt / xs}-М{yt }}2},                                (14)

0ху (t,s) = M {{M {xt / ys}-М{xt }}2},                                (15)

0хx (t,s) = M {{M {xt / xt' }-М{xt }}2}.                               (16)

Similar modifications of the joint linearization can also be made for a non-definite function provided in connection with (2). The only difference is that the gain coefficients on the arbitrary numbers x and v appear [11, 12, 13].

The linear relationship for (2) in this case looks like this:

  (17)

The considered approach to linearization is modeled on a computer for Hammerstein and Wiener type objects. In this case, higher (positive) results were obtained than the results of the combined statistical and harmonic linearization method [14, 15].

Example: We have a Hammerstein-type object with a nonlinear cubic description:

y = ax3                                                       (18)

For this nonlinearity, we find the analytical view of the coefficients  and а as follows:

 =  (mx+Amsinψ, Dx , θxx)dψ = [ -cos ]+

[-cos]+ [ -sin]+-cos)+ (t) =  [ - cos22 + cos2]  (19)

 [-sin2]+(t)   (20)

 = ()sinψdψ                  (21)

+

+(-

cos2)                           (22)

 [-cos22+cos2]+ [-

si]+(1-cos2)                    (23)

Conclusion. This article discusses a new way of linearizing nonlinear objects. The paper uses a dispersive method of linearization based on the properties of mathematical expectations based on conditional moments. The advantage of the obtained results is the symmetric variance function. The proposed method describes more accurately than the linearization method based on the correlation function. The results were tested using the Hammerstein-Wiener computer modeling method.

 

References:

  1. Raybman N.S., Chаdesov V.М. Building models of production processes. М.: Energy, 1975. Page 125.
  2. Belkina M.V., Gayubov T.N. Question of the use of dispersion functions in identification by statistical linearization method.Process modeling snd control. TashPI. 313. 1981. Page 57-60.
  3. Gayubov T.N., Pashenko F.F. Dispersion approach to statistical linearization and its application in the identification problem. report. Алма-Ата, 1981. Page 83.
  4. Aripov N., Sadikov A., Ubaydullayev S. Intelligent signal detectors with random moment of appearance in rail lines monitoring systems. // E3S Web of Conferences 264, 05039 (2021). CONMECHYDRO – 2021
  5. Sadikov A., Aripov N. Time characteristics of the flow of the impulse component of the train shunt resistance. // Design Engineering. – 2021. Vol 2021: Issue 09. pp. 13694 – 13706
  6. Nazirjon Aripov, Azamat Sadikov. Experimental studies of the impulse component of the resistance of a train shunt. // Vidyabharati International Interdisciplinary Research Journal. – 2021. Special Issue. pp. 3863 – 3869
  7. Sadikov A.N. Analysis of promising systems for monitoring the state of rail lines for the railways of the Republic of Uzbekistan. // European Scholar Journal. – 2021. Vol. 2 No. 8, August 2021. pp. 81-83
  8. Sadikov A.N. Methods of Technical Implementation of Receivers of Systems for Monitoring The State of Rail Lines for Railways Uzbekistan. // International Journal on Orange Technologies. – 2021. Volume 3 | No 10 (Oct 2021). pp. 43-46
  9. Azizov A.R., Ametova E.K., Ubaydullayev S.Q. Model of circuits against repeated relays of shunting routes. // Harvard Educational and Scientific Review. – 2022. Vol. 2 No. 1 (2022)
  10. Bulavsky P.E., Vaisov O.K. Modeling the processes of electronic document management of technical documentation using Petri nets. // Automation in transport. - 2019. - V.5. - No. 3. – S. 375–390.
  11. Bulavsky P.E., Vaisov O.K., Bystrov I.N. Modeling and estimation of the search time and troubleshooting of railway automation and telemechanics systems using Petri nets. // Automation in transport. - 2019. - V.5. - No. 4. – S. 478–492.
  12. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Abdullaev R.B. Features of the organization of functional control systems for combinational circuits based on polynomial codes. // Bulletin of the Petersburg University of Communications. - 2018. - V.15. - No. 3. – S. 432-445.
  13. Abdullaev R.B. Implementation of the subsystem for collecting diagnostic information in systems for continuous monitoring of railway automation devices on programmable logic controllers // Automation in transport. - 2020. - Volume 6. - No. 3. - S. 309-331. – DOI: 10.20295/2412-9186-2020-6-3-309-331.
  14. Abdullaev R.B. The method of logical processing of diagnostic data of railway automation and telemechanics devices based on signal quantization // Problems of security in transport: materials of the XI international scientific and practical conference: at 5 hours, Part 1 / Ministry of Transport and Communications of the Republic of Belarus, Belarusian railway. , Belarusian State University of Transport; under the general editorship of Yu. I. Kulazhenko. - Gomel: BelSUT, 2021. - S. 182-184. - ISBN 978-985-891-052-5 (part 1).
  15. Ubaydullayev S.Q. Methods For Implementing the Microelectronic Operation of The Automatic Push-Button Circuit and The Arrow Control Circuit and The Control Block Npm-69-M. // Galaxy International Interdisciplinary Research Journal. – 2022. 10 (2), 303-307
Информация об авторах

Ph.D., Associate Professor, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

канд. техн. наук, доцент, Ташкентский государственный университет транспорта, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Assistant, Tashkent State Transport University, Republic of Uzbekistan, Tashkent

ассистент, Ташкентский государственный транспортный университет, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top