OXIDATION OF Zn22Al ALLOY, DOPED WITH NICKEL

ОКИСЛЕНИЕ СПЛАВА Zn22Al, ЛЕГИРОВАННОГО НИКЕЛЕМ
Hakimov I.B. Obidov Z.R.
Цитировать:
Hakimov I.B., Obidov Z.R. OXIDATION OF Zn22Al ALLOY, DOPED WITH NICKEL // Universum: технические науки : электрон. научн. журн. 2022. 3(96). URL: https://7universum.com/ru/tech/archive/item/13245 (дата обращения: 22.02.2024).
Прочитать статью:

 

ABSTRACT

The article presents the results of a study on the oxidation of Zn22Al zinc-aluminium alloy doped with nickel, in air environment.

АННОТАЦИЯ

В статье представлены результаты проведённого исследования по окислению цинково-алюминиевого сплава Zn22Al, легированного никелем, в воздушной среде.

 

Keywords: Zn22Al alloy, nickel, thermogravimetric method, activation energy, alloys oxidation.

Ключевые слова: сплав Zn22Al, никель, термогравиметрический метод, энергия активации, окисление сплавов.

 

Introduction. Zinc-aluminum alloys are widely used in various fields of technology [1-3]. In this regard, several works [4-6] are devoted to the study of their various properties for various operational purposes. Recently, zinc-aluminum alloys have been used as protective coatings for steel structures, products and structures. The most famous of them are Zn5Al and Zn55Al alloys known under the trademarks Galfan-I, II and Galvalum [7-9].

Objective.  The purpose of this work was to study the effect of temperature and nickel additives on the oxidation kinetics of the Zn22Al alloy in the solid state.

Methods. The interaction of the Zn22Al-Ni alloys with atmospheric oxygen in the temperatures 523-623 K, was investigated by thermogravimetric method [10].  

Results. The values of the true oxidation rate for the base zinc-aluminum alloy Zn22Al are 3.00∙104 and 3.79∙104 kg∙m-2∙s-1, and for an alloy containing 0.01 wt% nickel it varies from 2.05∙104 to 2.71∙104 kg∙m-2∙s-1, respectively, at temperatures of 523 and 623 K. In this case, the value of the effective activation energy of the Zn22Al alloy is 151.2 kJ/mol, and for an alloyed alloy with 0.01 wt% nickel, this value acquires a value of 188.2 kJ/mol (Table 1).

The high values of the effective activation energy indicate that the oxidation of nickel-doped alloys results in the formation of oxide layers with good properties. The oxidation rate of the base zinc-aluminum alloy Zn22Al somewhat decreases when various amounts of nickel are added to it, its small amounts are especially effective. With an increase in the nickel content in the Zn22Al alloy, the values of the activation energy somewhat decrease, but according to the established value, all additives (0.01÷0.5%) of nickel contribute to an increase in the activation energy of the base Zn22Al alloy (Table 1).

The resistance of the Zn22Al base alloy to oxidation increases significantly when it is alloyed with nickel in amounts of 0.01÷0.1 wt%. High resistance to oxidation is noted for the Zn22Al alloy containing 0.01 wt % nickel. When 0.5 wt% nickel is added to the Zn22Al alloy, a slight decrease in the oxidation rate is also observed (Table 1).

Table 1

Kinetic and energy parameters of the oxidation process of Zn22Al alloy doped with nickel

Nickel

 content in

the alloy, wt%

Oxidation temperature,

К

True oxidation

rate К.104,

kg · m-2 . s-1

Effective activation energy of oxidation, kJ/mole

 

0.0

523

3.00

 

151.2

573

3.44

623

3.79

 

0.01

523

2.30

 

180.0

573

2.42

623

3.05

 

0.05

523

2.16

 

184.8

573

2.55

623

2.86

 

0.1

523

2.05

 

188.2

573

2.35

623

2.71

 

0.5

523

2.41

 

168.4

573

2.83

623

3.29

 

A change in the composition of the alloy under study during oxidation also affects the values of the effective activation energies. The calculated value of the effective activation energy in terms of the slope angle in the lgK–1/T coordinates for the Zn22Al zinc–aluminum alloy with different nickel contents varies monotonically. Curves (2–5) of alloys alloyed with nickel, compared to curve (1) of unalloyed Zn22Al alloy, are located to the left of it, which indicates an increase in the activation energy of the process (Figure 1).

 

Figure 1. Isochronous oxidation process (573 K) zinc-aluminum alloy Zn22Al alloyed with nickel

 

As a result of the oxidation of the studied alloys, using the example of the Zn22Al alloy containing 0.1% nickel, X-ray phase analysis established that the oxides ZnO, Al2O3, NiO and Al2O3∙Ni2O3 are formed (Figure 2).

 

Figure 2. Strach-roentgenograms of oxidation products zinc-aluminum alloy Zn22Al alloyed with 0.1 wt.% nickel

 

Generally, as a result of studying the oxidation of chromium-doped zinc-aluminum alloys, it was found that quantitative additions of chromium at a concentration of 0.01-0.1% contribute to a slight decrease in the oxidation rate of the Zn22Al base alloy under isothermal conditions, and, accordingly, an increase in the activation energy of the process.

 

References:

  1. Кеchin V.А., Lyblinskii Е.Ya. Zinc alloys. – Мoscow: Metallurgy, 1986. – 247 p. [In Russian].
  2. Uhlig H.H., Revie R.W. Corrosion and corrosion control. An Introduction to Corrosion Science and Engineering. – Leningrad: Chemistry, 1989. – 456 p. [In Russian].
  3. Vitkin А.I., Теindl I.I. Metal coverings of a sheet and strip steel. – Мoscow: Metallurgy, 1971. – 493 p. [In Russian].
  4. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 2. 55% Al-Zn coatings // Corrosion. – 1991. – Vol. 47. No 4. – P. 17-30.
  5. Mazilkin A.A., Straumal B.B., Borodachenkova M.V., Valiev R.Z., Kogtenkova O.A., Baretzky B. Gradual softening of Al-Zn alloys during high-pressure torsion // Materials Letters. – 2012. – Vol. 84. – P. 63-65.
  6. Lin K.L., Yang C.F., Lee J.T. Correlation of microstructure with corrosion and electrochemical behaviours of the bach-type hot-dip Al-Zn coatings: Part 1. Zn and 5% Al-Zn coatings // Corrosion. – 1991. – Vol. 47. No 4. – P. 9-13.  
  7. Amini R.N., Irani M., Ganiev I., Obidov Z. Galfan I and Galfan II Doped with Calcium, Corrosion Resistant Alloys // Oriental Journal оf Chemistry. – 2014. – Vol. 30. No 3. – P. 969–973.
  8. Obidov Z.R. Effect of pH on the Anodic Behavior of Beryllium and Magnesium Doped Alloy Zn55Al // Russian Journal of Applied Chemistry. – 2015. – Vol. 88. No 9. – P. 1451-1457.
  9. Obidov Z.R. Anodic Behavior and Oxidation of Strontium-Doped Zn5Al and Zn55Al Alloys // Protection of Metals and Physical Chemistry of Surfaces. – 2012. – Vol. 48. No 3. – Р. 352-355.
  10. Lepinskikh B.M., Kitashev A.A., Belousov A.A. Oxidation of liquid metals and alloys. – Мoscow: Science, 1979. – 116 p. [In Russian].
Информация об авторах

Applicant, Institute of technology and innovative management in Kulyab, Republic of Tajikistan, Kulyab city

соискатель, Институт технологии и инновационного менеджмента в городе Куляб, Республика Таджикистан, г. Куляб

Doctor of Chemical Sciences, Professor, Tajik Technical University named after academician M.S. Osimi, Republic of Tajikistan, Dushanbe

д-р хим. наук, профессор, Таджикский технический университет имени академика М.С. Осими, Республика Таджикистан, г. Душанбе

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top