ANALYSIS OF SOLAR MODULES FOR SELECTING THE OPTIMAL OPTION

АНАЛИЗ СОЛНЕЧНЫХ МОДУЛЕЙ ДЛЯ ВЫБОРА ОПТИМАЛЬНОГО ВАРИАНТА
Цитировать:
ANALYSIS OF SOLAR MODULES FOR SELECTING THE OPTIMAL OPTION // Universum: технические науки : электрон. научн. журн. Pak S. [и др.]. 2021. 12(93). URL: https://7universum.com/ru/tech/archive/item/12837 (дата обращения: 22.12.2024).
Прочитать статью:

 

ABSTRACT

This article is devoted to the use of data-based extended matrix (tabular) characteristics of the SB, which allows reasonably, based on statistical analysis, to select the type of universal solar battery model compatible with the SimPowerSystems section in the Matlab program.

АННОТАЦИЯ

 Данная статья посвящена использованию данных расширенных матричных (табличных) характеристик СБ, что позволяет обоснованно, на основе статистического анализа, выбрать тип универсальной модели солнечной батареи, совместимой с разделом SimPowerSystems в программе Matlab.

 

Keywords: solar battery, photovoltaic, thin-film technology, amorphous silicon.

Ключевые слова: солнечная батарея, фотовольтаика, тонкопленочная технология, аморфный кремний.

 

When simulating a solar system in the Simulink program, a universal solar battery model is required that is compatible with the SimPowerSystems section in the Matlab program, which makes it possible to simulate a power supply system taking into account changes in solar radiation and ambient temperature. The peculiarity of the model is that the current-voltage characteristic of the SB passes through three points: no-load voltage, short-circuit current, and the point of maximum power of the SB.

On the basis of the well-known publications [1], extended matrix (tabular) characteristics of the security system have been introduced, allowing reasonably, on the basis of statistical analysis, to select the types of security systems. The first group of photovoltaic converters includes crystalline SBs, the second - thin-film SBs. The production of structures based on monocrystalline silicon is a technologically complex and expensive process. Therefore, attention was paid to materials such as alloys based on amorphous silicon a-Si: H, gallium arsenide and polycrystalline semiconductors.

Thin-film solar cells (SCs) can consist of several thin layers of photovoltaic materials. The thickness range of such layers is from several nanometers to tens of micrometers. Thin-film solar cells are of different types: they are produced on the basis of 1) silicon (TF-Si); 2) cadmium telluride (CdTe); 3) compounds of copper with indium and gallium selenide (CuInGaS); 4) titanium dioxide (TiO2).

In fig. 1, Table 1 and Figure 2 show the I - V characteristics of various solar cells on the same scale.

 

Figure. 1. Current-voltage characteristics for different types of SB

Figure. 2. The theoretical limit for the specific short-circuit current of a solar cell

 

Table 1.

Current-voltage characteristics for different types of SB.

SB type

IKZ

(mA / cm2)

Uxx

(B)

Iopt

(mA / cm2)

Uopt

(V)

Rmax

(mW / cm2)

ξ (short circuit)

η

(%)

C-Si

42.2

0.672

40.4

0.59

23.85

0.842

24

AsGa

28.2

1.034

27,422

0.942

25,826

0.886

26

poly-Si

38.1

0.644

36.409

0.564

20.54

0.837

20.5

a-Si

19.4

0.723

18.619

0.64

11,916

0.85

11.9

CuInGaSe2

35,7

0.66

34,120

0.58

19,791

0.84

nineteen

CdTe

25.9

0.726

24,882

0.643

15,995

0.851

sixteen

 

Table 1: Isc - specific short-circuit current, Ux.x - no-load voltage, Iopt - specific optimal current, Uopt - optimal voltage, Pmax - specific maximum power, ξ - fill factor, η - efficiency at the point of maximum power.

From the data table. 1 it follows that two types of SB have the highest efficiency: C-Si and AsGa. AsGa is more expensive than C-Si and is manufactured by special order, therefore crystalline C-Si SB was chosen for the PMT. The fill factor is the ratio of the maximum power to the product of the short-circuit current and the open-circuit voltage of the solar cell (SC). This is a key parameter in assessing the efficiency of solar panels. Typical commercial solar panels have a duty cycle> 0.70, while cheap grade B solar panels have a duty cycle ranging from 0.4 to 0.7. A solar panel with a high fill factor has less losses due to series and parallel resistances. In fig. 3.3 shows the dependence of the output current and power of the solar cell on the voltage.

 

Figure. 3. Volt-ampere characteristic and power of the solar cell.

 

In fig. 3, the power characteristic of the ESS P = ISE ∙ USE is built, generated when the output voltage changes from Uxx to zero. It can be seen from this characteristic that there is only one point C, at which there will be the maximum generated power with the highest Pmax value (point C). This point is called the optimal operating point of the I - V characteristic of the solar cell, and the voltage and current at this point are, respectively, the optimal voltage Uopt and the optimal current Iopt. When designing an autonomous photomultiplier, they try to ensure the operation of the SB precisely at this point.

 (one)

 

Table 2.

 Efficiency for different types of SB

SB type

Efficiency

Silicon

 

Si (crystalline)

24.7

Si (polycrystalline)

20.3

Si (thin film transfer)

16.6

Si (thin film submodule)

10.4

Gallium arsenide

 

GaAs (crystalline)

25.1

GaAs (thin film)

24.5

GaAs (polycrystalline)

18.2

Chalcogenide thin films

 

OGS (photocell)

19.9

OGS (submodule)

16.6

CdTe (photocell)

16.5

Amorphous / Nanocrystalline silicon

 

Si (amorphous)

9.5

Si (nanocrystalline)

10.1

Photochemical

 

Based on organic dyes

10.4

Organic (submodule)

7.9

Organic

 

Organic polymer

5.15

Multilayer

 

GaInP / GaAs / Ge

32

GaInP / GaAs

30.3

GaAs / CIS (thin film)

25.8

a-Si / mc-Si (thin submodule)

11.7

 

where, ... For АsGa SB, the relative value of the optimal current and voltage of the duty cycle is ξ = 0.75 ÷ 0.89.

For the selected С-Si SB ξ = 0.8 ÷ 0.84, which is taken into account in the future.

The efficiency is defined as the ratio of the power generated by the solar cell to the power of the incident solar radiation. The efficiency of the solar cell depends on the spectrum, the intensity of the incident solar radiation and the temperature of the solar cell. To compare two SCs, they need to be tested under accepted standard conditions. Ground-based solar cells are tested at an air mass of AM1.5 and a temperature of 25 ° С, i.e. at mid-latitudes at the height of the Sun 41 49 '. ESS intended for use in space are measured with an air mass AM0, i.e. in near-earth space. Typically, the energy characteristics of the SB are determined under a nominal lighting condition (PC = 1000 w / m2). Panel efficiency is generally 1 ÷ 3% lower than solar cell efficiency due to glass reflections, frame, shading, higher temperatures, etc.

                                                                             (2)

For different types of SB, the efficiency is given in table. 2 [2].

The variety of developed types of SB allows you to choose the most suitable SB for the conditions of Uzbekistan according to the criterion: cost, service life, efficiency, availability.

 

References:

  1. Хожиев Ш.Т., Ротштейн В.М., Пак С.С.,Ганиев А.А. Исследование кремния, легированного ионами бора спектроскопией комбиниро-ванного рассеяния(Raman spectroscopy). Журнал «Высшая школа» Выпуск №3 февраль 2020 год. с 38-42.
  2. D. A. Tashmukhamedova, M. B. Yusupzhanova, G. Kh. Allayarova, and B. E. Umirzakov. Crystal Structure and Band Gap of Nanoscale Phases of Si Formed at Various Depths of the Near-Surface Region of SiO2. Technical Physics Letters, 2020, Vol. 46, No. 10, pp. 972–975.
  3. Тожибоев А.К., Султонов Ш.Д. Измерение, регистрация и обработка результатов основных характеристик гелиотехнических установок // Universum: технические науки : электрон. научн. журн. 2021. 11(92).
  4. Тожибоев А. К., Хакимов М. Ф. Расчет оптических потерь и основные характеристики приемника параболоцилиндрической установки со стационарным концентратором //Экономика и социум. – 2020. – №. 7. – С. 410-418.
  5. Тожибоев А. К., Немадалиева Ф. М. Комбинированные солнечные установки для теплоснабжения технологических процессов промышленных предприятий. результаты разработки и испытаний //Современные технологии в нефтегазовом деле-2018. – 2018. – С. 253-256.
  6. Хакимов М. Ф., Тожибоев А. К., Сайитов Ш. С. Способы повышения энергетической эффективности автоматизированной солнечной установки //Актуальная наука. – 2019. – №. 11. – С. 29-33.
  7. Эргашев С. Ф., Тожибоев А. К. Расчёт установленной и расчётной мощности бытовых электроприборов для инвертора с ограниченной выходной мощностью //Инженерные решения. – 2019. – №. 1. – С. 11-16.
  8. Davlyatovich, S. S. ., & Kakhorovich, A. T. . (2021). Recombination Processes of Multi-Charge Ions of a Laser Plasma. Middle European Scientific Bulletin, 18, 405-409. https://doi.org/10.47494/mesb.2021.18.906
  9. Тожибоева М. Д., Хакимов М. Ф. Исследование спектральных характеристик прозрачно-тепловой изоляции приемника //Universum: технические науки. – 2021. – №. 10-5 (91). – С. 17-19.
Информация об авторах

Senior Lecturer, Tashkent State Technical University, Uzbekistan, Tashkent

старший преподаватель, Ташкентский Государственный Технический Университет, Узбекистан, г. Ташкент

PhD Associate Professor, Tashkent State Technical University, Uzbekistan, Tashkent

PhD доцент, Ташкентский Государственный Технический Университет, Узбекистан, г. Ташкент

Senior Lecturer, Tashkent State Technical University, Uzbekistan, Tashkent

старший преподаватель, Ташкентский Государственный Технический Университет, Узбекистан, г. Ташкент

Master's student, TSTU, Uzbekistan, Tashkent

магистрант, Ташкентский Государственный Технический Университет, Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top