cтарший преподаватель кафедры начертательная геометрия и компьютерная графика, Ташкентский государственный технический университет имени Ислама Каримова, Узбекистан. г. Ташкент
ТРАДИЦИОННЫЕ И АДДИТИВНЫЕ ТЕХНОЛОГИИ В ПРОИЗВОДСТВЕ ДЕТАЛЕЙ МАШИН
АННОТАЦИЯ
В данной статье рассматривается применение традиционных и аддитивных технологий в производстве деталей машин. Представлены: схема традиционной технологий изготовления детали методом литья; схема формирования традиционной технологии изготовления детали методом литья; схема аддитивной технологии изготовления детали машин с применением 3D-принтера; классификация технологических процессов с применением 3D-принтера.
ABSTRACT
This article discusses the use of traditional and additive technologies in the production of machine parts. The following are presented: a diagram of traditional technologies for manufacturing a part by casting; a diagram of the formation of a traditional technology for manufacturing a part by casting; scheme of additive technology for manufacturing machine parts using a 3D printer; classification of technological processes using a 3D printer.
Ключевые слова: аддитивных технологий, аддитивных технологий, 3D сканированию, выплавляемым моделям
Keywords: additive technologies, additive technologies, 3D scanning, investment wax
Применение новых гипсоволоконных композиций
В современных условиях, в эпоху Интернета и электроники приоритетное значение имеет широкое внедрение современных информационно-коммуникационных технологий.
Определяется очень высоким (high tech) уровнем аддитивной технологии и очень большим вниманием к этой технологии во всех странах мира. Она дает неограниченные возможности получать самые сложные изделия во всех отраслях промышленности и даже в быту.
Ранее предполагалось практические эксперименты выполнить для изготовления литой заготовки для какой-либо конкретной детали машин и механизмов.
Специальная новейшая информация. Разыскать информацию 1) по устройствам 3D сканированию и печати, 2) по системам автоматического проектирования и управления 3D принтеров. 3) получить доступ к материалам для изделий. Собственноручно изготовить сложное изделие с помощью аддитивной технологии.
Рассматривается применение традиционных и аддитивных технологий в производстве деталей машин. Представлены: схема традиционных технологий изготовления детали методом литья; схема формирования традиционной технологии изготовления детали методом литья; схема аддитивной технологии изготовления детали машин с применением 3D-принтера; классификация технологических процессов с применением 3D-принтера. Приведено описание представленных схем традиционных и аддитивных технологий в производстве деталей машин с применением 3D-принтера. Показаны преимущества применения аддитивных технологий в производстве деталей машин.
Рисунок 1. Схема традиционной технологии изготовления детали методом литья
Рисунок 2. Схема формирования показателей традиционной технологии изготовления детали методом литья
Для быстрого производства - изготовление готовых деталей из материалов, поддерживаемых 3D-принтерами. Это является эффективным решение для мелкосерийного производства при изготовлении моделей и форм для литейного производства.
Рисунок 3. Схема аддитивной технологии с применением изготовления детали на 3D-принтере
Рисунок 4. Схема формирования показателей аддитивной технологии изготовления детали машин с применением изготовления детали на 3D-принтере
Применение двух технологий: получение отливок «по выплавляемым моделям» и «по сгораемым моделям» обусловлено тем, что получение синтез-модели на 3Д принтере полностью идентично. на 3Д принтере полностью идентично и различается только материалом модели и настройкой экструдера.
Ранее предполагалось практические эксперименты выполнить для изготовления литой заготовки для какой-либо конкретной детали машин и механизмов.
В дальнейшем было решено применить процесс получения оболочковой формы с введением в гипс тонкого стекловолокна. То есть, получить оболочку из гипса с введенным в него небольшого количества, примерно менее 0,1%, стекловолокна в виде обрывков длиной 3-6 мм. Это по нашему мнению должно было сыграть роль укрепляющей арматуры и препятствовать растрескиванию гипсовой оболочки.
В дальнейшем было решено применить процесс получения оболочковой формы с введением в гипс тонкого стекловолокна. То есть, получить оболочку из гипса с введенным в него небольшого количества, примерно менее 0,1% по весу, стекловолокна в виде обрывков длиной 5-10 мм. Это по нашему мнению должно было сыграть роль укрепляющей арматуры и препятствовать растрескиванию гипсовой оболочки. Для проведения эксперимента было изготовлено 200 мл сметанообразного водного раствора гипса, в который добавили нарезанное коротким ворсом волокна стекловаты. Длина нарезанных волокон была примерно 5 – 10 мм. Волокна вырезали ножницами из несколько спутанного комка стекловаты, поэтому часть нарезанного ворса могла отличаться от заданного размера в большую или в меньшую сторону, т.е. более 10 и менее 5 мм. Данный эксперимент имел характер постановочного и по количестве волокон и по длине подробные эксперименты не проводились. Для этого нужно проведение более широкого эксперимента с исследованием влияния длины и процентного соотношения волокон к количеству раствора гипса, влияния консистенции гипса и других параметров процесса. Предполагается, что это будет следующим этапом научных работ по докторской диссертации. Гипсо-волоконную композицию изготавливали с введением в сухой порошок гипса (150 г) нарезанного стекловолокна ( объёмом 100 мл свободно насыпанного), воды (50 – 70 мл) до образования сметанообразной консистенции, постоянно перемешиваемой металлической лопаточкой. В течении, примерно, 1 мин.
Модель опускали в жидкую гипсовую композицию, обволакивая модель слоем раствора 3 – 5 сек. Затем извлекали модель из раствора, поворачивали в пространстве, давая образоваться равномерному слою и стеканию лишнего раствора в течении 60 сек. За это время гипсовою композиция на модели несколько затвердевала. Гипсовую композицию в этом время интенсивно перемешивали, чтобы уменьшить скорость ее затвердевания. На данном этапе ограничились оболочкой в два слоя.
После 30 мин выдержки оболочку с моделью поместили в муфельную печь с температурой нагрева 400 град на 2 часа. После извлечения оболочковой формы констатировали, что модель полностью сгорела РИС. После чего оболочку поместили в опоку и засыпали сухим песком. Небольшой вибрацией уплотнили песок, из которого выходила литниковая система оболочки и сразу же форму залили РИС свинцом.
Через полчаса залитую форму извлекли и оболочку разрушили. На РИС показана отливка с литниковой системой и куски разрушенной оболочки. Из рис. видно, что толщина двойного слоя оболочки была равна 4 – 6 мм. Наличие волокон в гипсовой композиции предотвратило растрескивание формы при прокаливании. Таким образом, затраты времени на АВТОСАД проектирование ЗД синтез-модели составили 2-4 часа, на печатание модели на 3Д принтере до 2 часов, полностью были исключены многочисленные традиционные операции.
Проведенный эксперимент показал, что производство сложных отливок по сгораемой (газифицируемой) модели приготовленной на 3Д принтере с формой из волоконно-гипсовой композицией представляется весьма эффективным высоко технологичным процессом получения отливок. Процесс может быть рекомендован и к проведению более фундаментальных исследований и к практическому производственному, использованию.
Список литературы:
- ГОСТ 19505-86. Модели литейные и ящики стержневые пластмассовые. Технические требования.— Взамен ГОСТ 1950574; введ. 1987-06-Э0. - М.: Изд-во стандартов,1986.10с.
- Вольнов И.Н. Системы автоматизированного моделирования литейных процессов – состояние, проблемы, перспективы // Литейщик России. 2007. №6. С.14-17.
- Azamjon Tokhirov, Application procedure cad / cam / cae –systems in scientific research// Universum: technical sciences: a scientific journal. - No. 6 (87). Part 5.M., 2021. - 72 p. - Electron. print version publ. http://7universum.com/ru/tech/archive/category/687 DOI - 10.32743/UniTech.2021.87.6.11836
- Azamjon Tokhirov, Using the graphical editor "компас 3d" in teaching computer engineering graphics// Universum: technical sciences: a scientific journal. - No. 7 (88). Part 3.M., 2021. - 72 p. - Electron. print version publ. http://7universum.com/ru/tech/archive/category/788 DOI: 10.32743/UniTech.2021.78.8-3.12076
- Azamjon Ibrohim ugli Tokhirov, Technological process development using CAD-CAM programs, "Science and Education" Scientific Journal, June 2021 / Volume 2 Issue 6-288p. www.openscience.uz