научный сотрудник, Термезского Государственного Университета, Республика Узбекистан, г. Термез
СИНТЕЗ ПОЛИКАРБОНАТОВ НА ОСНОВЕ ЭПОКСИДИРОВАННОГО ПОДСОЛНЕЧНОГО МАСЛА
АННОТАЦИЯ
Изучено взаимодействие эпоксидированного подсолнечного масла и его производных с тетрабутилтитанатом. Показано, что смесь дигидрокси- и эпоксипроизводных образуется в различных пропорциях в зависимости от условий синтеза. Проанализированы ИК-спектры поликарбонатного синтеза эпоксидированного подсолнечного масла в присутствии тетрабутилтитаната.
ABSTRACT
The interaction of epoxidized sunflower oil and its derivatives with tetrabutyl titanate has been studied. It has been shown that a mixture of dihydroxy and epoxy derivatives is formed in different proportions, depending on the synthesis conditions.
Ключевые слова: эпоксидированное подсолнечное масло, муравьиная кислота, тетрабутилтитанат, перекись водорода.
Keywords: epoxidized sunflower oil, formic acid, tetrabutyl titanate, hydrogen peroxide.
Введение. Существует много причин для использования в настоящее время эпоксидированных производных растительных масел в качестве смазок для автомобилестроения. Эпоксиды представляют большой промышленный интерес, поскольку они являются промежуточными соединениями для производства полимеров, клеев и других материалов [1, 2].
За последние 30 лет наблюдается тенденция к замене ископаемого топлива возобновляемыми источниками сырья из-за ухудшения экологической ситуации в мире. Продукты нефти-газовой промышленности, несмотря на удовлетворение потребностей населения во многих отраслях экономики и различных сферах социально-экономического развития, имеют такие недостатки, как токсичность и невозможности к уничтожению, поэтому после использования они накапливаются в почве десятилетиями. Сегодня актуальна «Зеленая химия», задачей которой является совершенствование химико-технологических процессов, благотворно влияющих на окружающую среду [3]. В основном такие технологии разрабатываются в районах, где нет или ограничены запасы углеводородов, а также в районах с большими запасами биомассы (страны Северной и Латинской Америки, Европейский Союз, Юго-Восточная Азия, некоторые страны Африки). Актуальность вопроса заключается в том, что с установлением обменного курса для импорта товаров и технологий правительством России возникла необходимость в разработке и совершенствовании технологии получения биоразлагаемых экологически чистых материалов [4].
Один из источников возобновляемого сырья (биомассы) - эпоксидирование растительных и животных жиров и их производных - сейчас одна из актуальных тем. Особый интерес представляет использование сложных алкиловых эфиров жирных кислот, которые широко используются в дополнение к дизельному топливу [5]. Наличие двойных связей в углеводородной цепи сложных эфиров позволяет их химическую модификацию, в частности, получение эпоксидированных метиловых эфиров (эпокси-FAME) жирных кислот [6].
В частности, высокоуглеродистые эпоксидные кислоты используются непосредственно в качестве пластификаторов и стабилизаторов в процессах производства полимеров [7]. Другими преимуществами смазочных материалов на основе растительных масел являются низкая изменчивость из-за высокой молекулярной массы и высокой вязкости [8].
Экспериментальная часть. На сегодняшний день в ташкентском научно-исследовательском институте химической технологии проводится исследования по разработке метода синтеза поликарбонатов путем эпоксидирования подсолнечного масла. Для проведения процесса эпоксидирования применяются местные сырья, такие как подсолнечное масло, муравьиная кислота и перекис водорода.
В этом исследовании для эпоксидирования подсолнечного масла в колбу сначала наливают муравьиную кислоту, перекис водорода и подсолнечное масло и перемешивают с помощью гомогенизатора до образования однородной смолаобразной системы. Затем начинается нагрев колбы с смесью. Температура реакционной системы в колбе фиксируется в интервале 150-160 0С в течение 24 часов. Полученную белую смесь несколько раз промывают раствором бикарбоната натрия. Затем фильтруют через воронку и промывают дистиллированной водой. В качестве катализатора добавили 1-2 капли тетрабутилтитаната на каждый 10 грамм эпоксидированного масла. Углекислый газ вводили регулярно, чтобы предотвратить его реакцию с газами во внешней среде, а температуру контролировали с помощью термометра.
Цвет полученного продукта - светло-желтый и темная масса. Для определения наличии связей характерных поликарбонатным соединениям проведен инфракрасный спектроскопический анализ полученного поликарбоната по методу эпоксидирования подсолнечного масла в присутствии тетрабутилтитаната. Спектры ИК-анализа синтезированного поликарбоната показаны на рисунке 1 ниже.
Рисунок 1. ИК-анализ полученного поликарбоната по эпоксидированию подсолнечного масла в присутствии тетрабутилтитаната
Анализ проводился с использованием технологии ИК-спектра (IK-Fure, SHIMADZU, Япония). По результатам анализа колебания групп С-Н на частоте поглощения 3008см-1, колебания групп СН3 и СН2 на частоте 2852-2922 см-1, колебания связи С=О в 1741см-1 область, поглощение связи H-O на площади 1417см-1, 1379см-1. Мы можем наблюдать колебания связи О=С-С в поле 1463 см-1, колебания связей С-Н в поле 842см-1.
Расшифровка ИК-спектров полученного продукта показывает наличие химических связей характерных поликарбонатным соединениям.
В таблице 1 ниже показано йодное число эпоксидированного подсольнечного масла.
Таблица 1.
Йодное число эпоксидированного подсольнечного масла
Компоненты и условия системы |
Йодное число |
Подсолнечное масло |
124,6 |
Масло + перекись водорода + муравьиная кислота + гидрокарбонат натрия (водный раствор) + диоксид углерода. Условия проведения реакции: 3 часа, 70 оС, 1 атм. |
117,8 |
Масло + перекись водорода + муравьиная кислота + гидрокарбонат натрия (водный раствор) + диоксид углерода+ тетраметиламмоний брамид. Условия проведения реакции: 24 часа, 140-150 оС, 1атм. |
117 |
Из приведенной выше таблицы видно, что при исследовании самого подсолнечного масла в качестве образца содержание йода в нем составляло 124,6, а при обработке эти значения уменьшались. Когда растительное масло обрабатывали перекисью водорода, муравьиной кислотой, водным раствором бикарбоната натрия и диоксидом углерода, было обнаружено, что содержание йода в нем изменилось до 117,8. Когда изучалось действие катализатора на обработанное растительное масло, было обнаружено, что содержание йода составляло 117.
Выводы: Из анализа полученных результатов можно сделать вывод, что йодное число снизилось в результате обработки растительного масла и наличия групп с необходимыми частотами поглощения при ИК-спектральном анализе. Снижение йодного числа свидетельствует о том, что двойные связи подсолнечного масла участвовали в реакции эпоксидирования.
Спсиок литературы:
- Милославский А. Г. и др. Закономерности эпоксидирования рапсового масла пероксидом водорода в присутствии вольфрамата натрия и четвертичных аммониевых солей //Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. – 2007. – №. 7. – С. 42-46.
- Киёмов Ш. Н., Джалилов А. Т. Уретановый олигомер ОУ-400 //Universum: технические науки. – 2020. – №. 7-2 (76).
- ГХ/МС анализ продуктов окисления метиловых эфиров жирных кислот подсолнечного масла / И.В. Леденева [и др.] // Сорбционные и хроматографические процессы. 2015. Т. 15, Вып. 2.С. 280-287
- Киёмов Ш. Н., Джалилов А. Т. Трибология эпоксиуретанового полимера //Universum: технические науки. – 2019. – №. 6 (63).
- Kryzhanovskii V. K., Lavrov N. A., Kiemov S. N. The effect of disperse fillers on the thermomechanical characteristics of epoxy polymers //Polymer Science, Series D. – 2018. – Т. 11. – №. 2. – С. 230-232.
- Bascuas S., Hernando I., Moraga G., and Quiles A. (2020). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. Int. J. Food Sci. Technol. 55, 1458–1467.
- Готлиб Е. М. и др. Эпоксидированные масла каучукового дерева и сои как эффективные модификаторы эпоксидных полимеров //Известия высших учебных заведений. Химия и химическая технология. – 2019. – Т. 62. – №. 9.
- Крыжановский В. К., Лавров Н. А., Киемов Ш. Н. Влияние дисперсных наполнителей на термомеханические характеристики эпоксидных полимеров //Все материалы. Энциклопедический справочник. – 2017. – №. 11. – С. 9-13.