TECHNOLOGICAL REVIEW FOR USING POLYACRYLIC MEMBRANES IN FLUE GAS UTILIZATION

ТЕХНОЛОГИЧЕСКИЙ ОБЗОР ИСПОЛЬЗОВАНИЯ ПОЛИАКРИЛОВЫХ МЕМБРАН В УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ
Цитировать:
Khakimov F.Sh., Khakimova Sh.Sh., Maksumova O.S. TECHNOLOGICAL REVIEW FOR USING POLYACRYLIC MEMBRANES IN FLUE GAS UTILIZATION // Universum: технические науки : электрон. научн. журн. 2021. 10(91). URL: https://7universum.com/ru/tech/archive/item/12346 (дата обращения: 18.11.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2021.91.10.12346

 

ABSTRACT

The article provides information on optimizing the operating mode of technological furnaces, increasing efficiency by utilizing the heat of flue gases and data on reducing fuel consumption for technological purposes. The maximum efficiency of technological furnaces of primary oil refining installation was increased until 70.68% by optimization of the combustion process. For further increment of efficiency, the following technological changes have been made: 1) Utilization of heat to lower flue gas’s temperature, and then capturing harmful and greenhouse gases; 2) Creation of an information system for calculating and predicting the composition of flue gases by analyzing the content of nitrogen and sulfur in fuel oil and technological fuel gas. A technological scheme for utilization of flue gases from primary oil refining furnaces is proposed.

АННОТАЦИЯ

В статье представлена ​​информация по оптимизации режима работы технологических печей, повышению КПД за счет использования тепла дымовых газов и данные о снижении расхода топлива на технологические цели. Максимальный КПД технологических печей установки первичной переработки нефти увеличен до 70,68% за счет оптимизации процесса сжигания. Для дальнейшего повышения эффективности проведены технологические изменения: 1) Использование тепла для снижения его температуры, а затем улавливание вредных и парниковых газов; 2) Создание информационной системы для расчета и прогнозирования состава дымовых газов путем анализа содержания азота и серы в мазуте и технологическом топливном газе. Предложена технологическая схема утилизации дымовых газов печей первичной переработки нефти.

 

Keywords: greenhouse gas emissions, membrane for capturing CO2, capacity, technology, utilization, flue gases

Ключевые слова: выбросы парниковых газов, мембрана для улавливания СО2, мощность, технология, утилизация, дымовые газы.

 

Harmful greenhouse gases and aerosols resulted from the combustion of fuel oil with heteroorganic compounds: a mixture of gases containing sulfur oxides, carbon dioxide, carbon monoxide, nitrogen oxides, fine dust particles, water vapor, unburned hydrocarbon gases, nitrogen, unreacted oxygen, etc [1, p.330]. Along with the smoke gases, very high heat is also released into the environment. The emitted acidic gases are hydrated in the atmosphere and return to the earth, resulting in damage to the environment and human health [2, p.999; 3, p.1]. Harmful exhaust gases emitted into the environment by enterprises operating on the basis of old technologies have a negative impact on the health of the population in the vicinity of the enterprise and, ultimately, on the environment of the country and the globe. The global warming process, i.e. the "greenhouse effect", is caused by the increase in the concentration of carbon dioxide, carbon monoxide, methane and similar heat trapping gases in the air during their mining, processing and combustion. Moreover, the rapid depletion of fossil energy sources, as well as with the increase of harmful gases, the emergence of many diseases that were not in the previous time have occurred and this procedure is being a serious concern to the whole world [4, p.15; 5, p.1]. In this paper, scientific development has been proposed for the introduction of energy-saving technology in the primary oil refining and automation of the calculation of the combustion process in the furnaces used in this process. In order to use of industrial furnaces, including oil refining furnaces, efficiently, the introduction of the following three-stage technological additions and changes was conducted:

 a. Optimization of working conditions;

 b. Efficient use of heat output;

 c. Waste recycling.

From the table 1, it can be seen that the concentration of this gas in the atmosphere has increased by 36.41% over the last 100 years [6, p.60]. The situation is also having a negative impact on the economy, as they are increasing health care costs and taking away with them raw materials that are valuable for other production.

As we know, almost all fuels that are burned in oil refineries’ furnaces, e.g. fuel oil or technological gas, consist of heterorganic compounds. Some reactions of fuel oil and gas combustion process are as follows: (pentadecane) C15H32 + 23O2 à 15CO2+16H2O, (ethane) C2H6+3.5O2 à 2CO2+3H2O, (hydrogen sulfide) 2H2S+3O2 à 2SO2+2H2O, (thiophene) C4H4S+6O2 à 4CO2+2H2O+SO2, (pyridine) 2C5H5N + 14.5O2 à 10CO2 + 5H2O+2NO2, (sulfide) C8H17-S-C7H15 + 24O2 à 15CO2 + 16H2O + SO2, (phenol) C6H5OH + 7O2 à 6CO2+3H2O etc.) oxidation reactions take place.

Table 1.

Basic parts of dry air by volume.

Gas

Volume

Name

Formula

ppmv

%

Nitrogen

N2

780,840

78.084

Oxigen

O2

209,460

20.946

Argon

Ar

9,340

0.9340

Carbon dioxide (april, 2019)

CO2

413.32

0.041332

Neon

Ne

18.18

0.001818

Helium

He

5.24

0.000524

Methane

CH4

1.87

0.000187

Krypton

Kr

1.14

0.000114

 

Methods

The method of testing nitrogen content of fuel oil

Nitrogen content of fuel oil and technological fuel gas is determined according to the methodology and instrumentation mentioned in the literature [7, p.1]

The method of testing sulfur content of fuel oil

Standard test method is used to define sulfur content of fuel oil [8, p.1]. The determination of sulfur content of technological fuel gas is not needed as it is treated with diethanolamine before the combustion.

The method of predicting flue gas composition

Information system was created to calculate for predicting the composition of flue gas derived from after combustion of fuel oil and technological gases. It was performed by means of Excel [9, p.620]. The information system was given as an electronic appendix to this paper.

Results and discussion

Prediction process of flue gas composition.

Firstly, created an information system that calculates the material balance of the process of combustion of the primary technological furnace, where fuel oil and technological fuel gases are combusted, on the technological installation ELOU-AVT-2/3 of Fergana Refinery.  At the same time, using standard methods for determining the composition of fuels, it was possible to determine the amount of nitrogen and sulfur and predict the amount of toxic anhydrides released during combustion.  If the emissions of toxic and greenhouse gases are higher than the norm (maximum allowable emissions), the system indicates it (colored red for SO2, brown for NO, green for NO2 see electronic application or Table 2). The highest efficiency of the furnaces of primary oil refinery could be achieved by optimization just until 70.68% [10, p.105]. For further increment of the efficiency technological additions has to be implemented [6, p.60; 11, p.34].  The technological schemes for the process are referred as Figure 1 and Figure 2.

The definition of technological scheme.  This is a closed system, close to ideal, i.e. here is only the entry of raw materials and the output of the finished product, the losses are minimized. In order to utilize the heat of the flue gases emitted into the atmosphere at a temperature of 370 oC, heat recovery utilizer and recuperator are used to obtain live steam and hot air for technological use, thereby lowering the temperature of the flue gases to 105-115 oC. The developed live steam moves through the serpentine tubes inserted into the 19/191 - adsorbers, heats the membrane to 70 oC, which breaks the chemical bond formed by the CO2 and the membrane, and allows pure CO2 to be obtained. A temperature swing desorbing mode under vacuum was selected for the desorption process. The heat of this live steam being produced meets the need for heat in the installation. The flue gases enter the 10 - mixer with ozone. Oxidized gases are acidic gases that are easily absorbed by the absorbent. The fully oxidized flue gases then transfer their heat to the water of 11 - economizer (or process deaerator water) for heating. Acidic oxides are absorbed into the condensate along with ammonia, leaving the devices in a neutral environment that does not degrade, and sent to the stable fertilizer production unit. Uncondensed flue gases enter the 12 - scrubber at a temperature of 40-70 oC, where they are also washed with ammonia water (pH = 5-10). Stable fertilizers NH4NO3 and (NH4)2SO4 are obtained from the formed unstable NH4NO2 and (NH4)2SO3 salts. The non-condensed gases are sucked out of the separator through the 13 - drip eliminator by means of a 51 - smoke exhauster and fed to the 14 - compressor, from there to the 15 - absorber, or without entering it to the 19/191 - adsorber. In the 15 - absorber, SO2 in the flue gases is absorbed using a 30% limestone solution. As a result, the production of gypsum - CaSO4 from limestone CaCO3 is launched. Smoke gases containing mainly nitrogen - N2, O2, CO2, H2O and small amounts (<2 ppm) of other acidic oxides pass through the PAM layer of the 19/191-adsorber, where the CO2 in the flue gas is trapped. The 19/191 - adsorber contains PAM and operates periodically alternating with the 191/19 - desorber. For desorption, the internal pressure of the desorber is reduced to ≤100 mbarabs by means of 82-vacuum pump, and using live steam the pipes inserted into the desorber’s jacket and the membrane are heated gradually to 70 oC. The desorbed CO2 cooled using an 161 - aqueous cooler, and sent to 20 - compression section, then to the intended use, e.g., dry ice, acrylic acid production unit and other petrochemical production units. In the above-mentioned furnace, if only desulfurized technological gases are used, SOn, NxOy gases and aerosols are almost absent in flue gases, in this case the scrubber is not supplied with ammonia water, flue gases enter to the 19/191 - adsorber bypassing 15 – absorber.

Table 2.

Material balance of the combustion process in furnaces of Oil Refinery

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Inlet

Yield value

 

 

Name

kg/h

%

m3/h

%

Name

kg/h

%

m3/h

%

Fact, mg/m3

PDV, mg/m3

1

C2H6

1989,52

2,51

1485,51

42,22

1

CO2

7430,91

9,37

3783,01

6,02

 

 

 

H2S

10,48

0,01

6,90

0,20

2

CH

0,20

0,00

0,15

0,00

3,18

10,61

2

C15H32

390,54

0,49

609,20

17,31

3

SO2

30,30

0,04

10,60

0,02

482,16

362,70

 

C5H11-S-C6H13

31,08

0,04

 

 

4

H2O

5372,36

6,77

6685,61

10,64

 

 

 

2C5H5N

79,90

0,10

 

 

5

N2 and other in.gases

58177,56

73,34

46542,05

74,06

 

 

 

C5N11OC6H13

28,49

0,04

 

 

6

O2

8278,09

10,44

5794,66

9,22

 

 

3

Water vapour

1138,50

1,44

1416,80

40,27

7

CO

1,87

0,00

1,49

0,00

29,70

33,11

4

Air

75653,52

95,38

58435,83

1660,86

8

NO

30,00

0,04

22,40

0,04

477,40

115,75

 

 

 

 

 

 

9

NO2

0,52

0,00

0,25

0,00

8,31

5,79

 

Overall

79322

100

3518

100

 

Overall

79322

100

62840

100

 

 

Кириш

Чиқиш

 

 

Номи

кг/соат

%

м3/соат

%

Номи

кг/соат

%

м3/соат

%

Факт, мг/м3

ПДВ, мг/м3

1

C2H6

1989,52

2,51

1485,51

42,22

1

2

7430,91

9,37

3783,01

6,02

 

 

 

H2S

10,48

0,01

6,90

0,20

2

CH

0,20

0,00

0,15

0,00

3,18

10,61

2

Маз. комп.C15H32

390,54

0,49

609,20

17,31

3

2

30,30

0,04

10,60

0,02

482,16

362,70

 

C5H11-S-C6H13

31,08

0,04

 

 

4

H2О

5372,36

6,77

6685,61

10,64

 

 

 

2C5H5N

79,90

0,10

 

 

5

N2 ва ин.газ

58177,56

73,34

46542,05

74,06

 

 

 

C5Н11ОC6H13

28,49

0,04

 

 

6

О2

8278,09

10,44

5794,66

9,22

 

 

3

Сув буғи

1138,50

1,44

1416,80

40,27

7

1,87

0,00

1,49

0,00

29,70

33,11

4

Ҳаво

75653,52

95,38

58435,83

1660,86

8

30,00

0,04

22,40

0,04

477,40

115,75

 

 

 

 

 

 

9

2

0,52

0,00

0,25

0,00

8,31

5,79

 

Жами

79322

100

3518

100

 

Жами

79322

100

62840

100

 

 

PDV – maximum permissible emission

 

Figure 1.  Principled technological scheme of efficient use of heat from flue gases

 

Equipment specification: 1 - tubular furnace with two combustion chambers with a concave arch;  2 - pipe;  3, 31- slide valves;  32, 33 - valves, 4 - equipment for efficient use of flue gas heat;  5 - smoke extractor;  6 - receiver or settling chamber;  7-steam generator;  8 - piston pump;  9 - recuperator. Flow specifications: I - flue gases;  II - live steam;  III - exhaust steam + steam condensate;  IV - atmospheric air;  V - hot air;  VI - Na3PO4;  VII - hydrazine - hydrate;  VIII - solid and oily sediments;  IX - to the chimney, X - to the flue gas separation section;  XIII-ammonia water.

 

Figure 2. Schematic technological scheme of flue gas separation

 

 Equipment specification: 51 - smoke exhauster;  82 - vacuum pump; 81 - centrifugal pump; 10 - gas mixing device; 101 - ozonator (or water with potassium permanganate); 11 - economizer (boiler);  12 - scrubber;  13 – drip eliminator;  14, 141 - compressors;  15 - absorption column;  16, 161 - water coolers;  17 - CaCO3 solution preparation and gypsum production department;  18 - absorbent retaining device;  19/191-adsorber / desorber containing polyacrylate membrane;  20 - compression section. Flow specifications: III - exhaust steam + steam condensate;  II - live steam;  XI - circulating water; XII - 15-20% ammonia water;  XIII - mineral fertilizer containing NxOy and partially SOn;  XIV -a mixture of gases consisting of CO2, O2, N2;  XV - to the compression section of carbon dioxide;  XVI - a mixture of gases consisting of 91-95% N2 and 5-9% O2 to the nitrogen gas (inert gas) production unit, XVII-limestone slurry; XVIII – gypsum.

CONCLUSION

Thus, conditions for CO2 absorption by polyacrylic membranes were established. An efficient and energy-saving CO2 membrane was obtained.

In addition to the ability of the membrane obtained to trap CO2, it exhibited easy CO2 regeneration at relatively low temperatures (70 oC) and relatively excellent stability in adsorption-desorption cyclic processes. Such a membrane is of great importance for use in the purification of flue gases on an industrial scale. The following can be inferred from a test study conducted to capture CO2 gas: First, the initial rate of adsorption and desorption increased. Second, the recyclability of PAM was shown to be superior to other materials tested. The process conditions that allow the use of renewable PAM at CO2 capture process was organized and recommended to be used as a low-power demanding alternative in manufacturing plants.

 

References:

  1. Akimova T. V. «Ekologiya. Priroda - Chelovek - Texnika .: Uchebnik dlya studentov texn. napravl. ya spes. vuzov » M.2006 .: YuNITI-DANA, 2006, 330. [in Russian]
  2. Thomas Loerting, Romano T. Kroemer and Klaus R. Liedl, On the competing hydrations of sulfur dioxide and sulfur trioxide in our
  3. atmosphere // Chem. Commun., 2000, 999–1000.
  4. Bamdad, H., Renewable and Sustainable Energy Reviews, 2017. http://dx.doi.org/10.1016/j.rser.2017.05.261, -P, 1-2.
  5. Frederica Perera “Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist” Int. J. Environ. Res. Public Health, 2018, 15-16.
  6. "7 Kyoto Protocol to the United Nations Framework Convention on Climate Change". UN Treaty Database. Retrieved 27 November 2014.
  7. F. Sh. Khakimov, N.Sh. Mukhtorov, Sh. Sh. Khamdamova, O.S. Maksumova. Poliakrilatlar yordamida neftni qayta ishlashning chiqindisiz texnologiyasini tashkil etishga // O’zbekiston kimyo jurnali, -Toshkent, 2020. -№ 3, 60-66. [in Uzbek] http://www.azom.com/article.aspx?ArticleID=19660
  8. ASTM D 2622 Standard Test Method in Petroleum Products by wavelength Dispersive X-ray Fluorescence Spectrometry
  9. F. Sh. Xakimov, Imamov N.K., Farg‘ona neftni qayta ishlash zavodida ELOU-AVT-2 texnologik qurilmasidagi neftni birlamchi haydash texnologik pechida yonish jarayonining material balansini hisoblashni avtomatlashtirish masalasiga // Umidli kimyogarlar, TKTI, 2017, 620-621. [in Uzbek]
  10. F. Sh. Khakimov, Khamdamova Sh., Rahmonov H. Umen'shenie vibrosov v atmosferu neftepererabativayushix zavodov cherez optimizasiyu raboti i povishenii K.P.D. pechey neftepererabativayushix predpriyatiy // “KHIMIYA I EKOLOGIYA - 2015”, Materiali Mejdunarodnoy nauchno – prakticheskoy konferensii. Ufa Izdatel'stvo UGNTU, 2015, 105-108. [in Russian]
  11. F. Sh. Khakimov, N. Sh. Muxtorov, Sh. Sh. Khamdamova, O. S. Maksumova, [N. K. Imamov]. Energiya tejamkor texnologiyani neftni birlamchi qayta ishlash jarayoniga joriy etish // O‘zbekiston neft va gaz jurnali, -Toshkent, 2020. -№ 3,  34-37, 74-77. [in Uzbek and Russian]
Информация об авторах

Student DSc, Ferghana Polytechnic Institute, Republic of Uzbekistan, Fergana

докторант (DSc) , Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Masters student, Tashkent Chemical-Technological Institute, Uzbekistan, Tashkent

магистрант, Ташкентский химико-технологический институт, Узбекистан, г. Ташкент

Doctor of Chemical Sciences, Tashkent Chemical-Technological Institute, Uzbekistan, Tashkent

д-р хим. наук, Ташкентский химико-технологический институт, Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top