Studying the effect of rotor-filter contact element on cleaning efficiency

Изучение влияния контактного элемента ротор-фильтр на эффективность очистки
Цитировать:
Studying the effect of rotor-filter contact element on cleaning efficiency // Universum: технические науки : электрон. научн. журн. Tojiev R. [и др.]. 2021. 6(87). URL: https://7universum.com/ru/tech/archive/item/11915 (дата обращения: 10.08.2022).
Прочитать статью:
DOI - 10.32743/UniTech.2021.87.6.11915

 

ABSTRACT

Objective. Rotor-filter device for wet washing of dust gases. A new design scheme of the surface contact element has been developed for , for its various design parameters, fluid consumption, dust gas velocity, coefficients of resistance of working bodies and hydraulic resistance have been experimentally determined.

Methods. The results of experiments to determine the hydraulic resistance and the research work of KTSemrau were used to study the cleaning efficiency of the device. It is known from KTSemrau’s research work that the cleaning efficiency depends on the hydraulic resistance of the device and not on the size and design of the device. In this case, the total energy consumption should be spent on the purification of dusty gases using liquids. The average median size of the dust is also important.

Results. Calcium technical soda powder selected for the sample was used to determine the cleaning efficiency. According to it, the gas density was determined for the mixture of air and calcium technical soda dust rg = 1.49 kg/m3 (where dolomite powder in 1m3 of air is required by the PDK and 240.94 mg/m3 according to GOST-23672-79).

Conclusion. The results obtained by applying a new contact element in the rotor-filter device showed that it is possible to achieve a efficiency of 23.45% when cleaning dust particles from 1 ÷ 5 μm and 3.05% when cleaning dust particles from 5 ÷ 20 μm compared to the existing device.

АННОТАЦИЯ

Цель. Роторно-фильтрующее устройство для мокрой промывки пылевых газов. Разработана новая конструктивная схема поверхностного контактного элемента, для которого при различных его конструктивных параметрах экспериментально определены расход жидкости, скорость пыле газа, коэффициенты сопротивления рабочих органов и гидравлического сопротивления.

Методы. Результаты экспериментов по определению гидравлического сопротивления и научно-исследовательские работы КЦЕМРАУ были использованы для изучения эффективности очистки устройства. Из исследований КЦЕМРАУ известно, что эффективность очистки зависит от гидравлического сопротивления устройства, а не от размера и конструкции устройства. В этом случае общее потребление энергии должно быть потрачено на очистку запыленных газов с использованием жидкостей. Также важен средний средний размер пыли.

Результаты. Для определения эффективности очистки использовали порошок кальциевой технической соды, выбранный для образца. Согласно ему плотность газа определялась для смеси воздуха и кальциевой технической содовой пыли rg = 1,49 кг/м3 (где доломитовый порошок в 1м3 воздуха требуется по ПДК и 240,94 мг/м3 по ГОСТ-23672-79).

Вывод. Результаты, полученные при применении нового контактного элемента в устройстве ротор-фильтр, показали, что можно достичь КПД 23,45% при очистке частиц пыли от 1 ÷ 5 мкм и 3,05% при очистке частиц пыли от 5 ÷ 20 мкм по сравнению с существующим устройством.

 

Keywords: rotor-filter, contact element, resistance coefficient, hydraulic resistance, calcium technical soda, dust, cleaning efficiency.

Ключевые слова: ротор-фильтр, контактный элемент, коэффициент сопротивления, гидравлическое сопротивление, кальциевая техническая сода, пыль, эффективность очистки.

 

Introduction

In the article The cleaning efficiency of the device was determined at various parameters of the new design of the surface contact element, designed for the rotor-filter device for wet cleaning of dust gases. Calcium technical soda powder was selected for the study and its granulometric composition was analyzed and the average median size of the powder was determined. In determining the cleaning efficiency of the device KTSemrau's research work was used and empirical formulas were obtained by constructing comparison graphs. The results of the experiments are based on optimal parameters using the method of mathematical planning.

Rotor-filter device for wet washing of dust gases [1,2,3] (Figure 1) A new design scheme of the surface contact element has been developed for (Fig. 2), for its various design parameters, fluid consumption, dust gas velocity, coefficients of resistance of working bodies and hydraulic resistance have been experimentally determined. [2,4,7,8,9].

However, the laws of cleaning efficiency of the device at different design parameters of the surface contact element have not been studied. Therefore, this study aims to evaluate the effect of the surface contact element of the new design on the cleaning efficiency of the rotor-filter device.

 

Figure 1. General view of the device

1 – mounting body; 2 – diffuser; 3 – confuzor; 4 – surface contact element; 5-working fluid pipe; 6 – nozzles; 7 - umbrella that spreads the liquid evenly on the surface of the contact element; 8-liquid bath; 9-sludge pipeline; 10-sludge pipe; 11 – rotor shaft; 12 – electric motor; 13 – nasos; 14 – fan; 15-screw auger; 16-gas speed control device (shiber); 17 – Prandl nay; 18 – LATR; 19 – taxometer; 20 – electronic monometer JM-510; 21 – rotometer.

 

Figure 2. General view of the surface contact element

1-val; 2-pole rod; 3-filter; 4.

 

Research methods

The results of experiments to determine the hydraulic resistance [2] and the research work of KTSemrau [3] were used to study the cleaning efficiency of the device. It is known from KTSemrau’s research work that the cleaning efficiency depends on the hydraulic resistance of the device and not on the size and design of the device. In this case, the total energy consumption should be spent on the purification of dusty gases using liquids. The average median size of the dust is also important.

Based on the above, for experimental research to determine the effectiveness of device cleaning, soda powder formed during the drying of calcium technical soda in the raw material preparation shop of JSC "QuvasoyKvars" was selected as a sample and its granulometric composition was analyzed and the average median size was determined. The following is a general description of the technical soda of calcium and the results of the analysis performed.

“QuvasoyKvars ”JSC calcium technical soda KTS [4] grades A and B are used as a by-product in accordance with GOST5100-85. The total share of production is 261-300 kg per 1 ton, depending on the type of product. In use, the granulometric content should not exceed 250 μm. The main source of dust is formed during the drying process before adding soda to the slag.

The sample of soda ash was selected for 5 minutes in the laboratory model of the LM-2E saturation device (beg) and 5 minutes in the laboratory model of the RETSCH-DIN-ISO 3310/1 sorting sieve for 5 minutes. The size of the sieve grids was selected to be 5, 20, 40, 63,100 μm. Based on the results obtained, the powders were divided into fractions as a percentage. The experiments were repeated 5 times and the arithmetic mean values were obtained.

Analysis of the dispersion composition of the dust showed that it is 60% to 0.01-1 μm, 25% to 1-5 μm, 20% to 5-25 μm, and 5% to 25-100 μm. The results of the analysis were processed in the appropriate order and the average median size of the soda powder was taken to be 9 μm.

 

Figure 3. The mounting angle of the contact element on the rotor is a = 60o

 

Research results:

Calcium technical soda powder selected for the sample was used to determine the cleaning efficiency. According to it, the gas density was determined for the mixture of air and calcium technical soda dust rg = 1.49 kg/m3 (where dolomite powder in 1m3 of air is required by the PDK and 240.94 mg/m3 according to GOST-23672-79).

In the experiments, the following limits of variable factors, fluid nozzle diameter dsh = 2 mm [5], fluid consumption Qsuyu = 0.071 ÷ 0.272 m3/h interval increased to 0.060 m3/h, filter hole diameter df = 3 mm, installation of contact element on the rotor angle a = 30o; The number of contact elements 45o and 60o is 12, respectively, depending on the installation angle; 8 and 6, the gas velocity yg = 5 ÷ 25 m/s, the intermediate step was increased to 5 m/s. In the experiments, the average frequency of rotation of the rotor was n = 25 rpm, the temperature for the water and gas system was set at 200S ± 2, taking into account the influence of the external environment during the experiments. Based on the results of the obtained experiments, comparison graphs were constructed on the effect of liquid consumption on the cleaning efficiency. (Figures 3; 4 and 5). Given the multivariate nature of the experiments, the graphs were constructed for low and high loads.

 

Figure 4. The mounting angle of the contact element on the rotor is a = 60o

Figure 5. The mounting angle of the contact element on the rotor is a = 45o

 

Figure 6. The mounting angle of the contact element on the rotor a = 30o

1- gas velocity yg = 5 m/s, liquid flow Qsuyu = 0.071 ÷ 0.272 m3/h;

2- gas velocity yg = 25 m/s, liquid flow Qsuyu = 0,071 ÷ 0,272 m3/h;

3; Figures 5 and 6. Cleaning efficiency FARFA fluid consumption Qsuyu dependence on 3; 4 and 5 It can be seen from the information given in the pictures 14%. Intermediate growth did not exceed 15%.

 

Discussions

From the results of the experiment it appears that the expansion of the mounting angle of the contact element to the rotor reduces the pressure lost in the device, but has a negative effect on the cleaning efficiency. Conversely, a narrowing of the contact element mounting angle to the rotor increases the number of elements, which in turn determines an increase in the contact surface and an improvement in cleaning efficiency. One of the technical requirements for this type of device is to increase the contact surfaces at low energy consumption and thus improve the cleaning efficiency [7,8,9,10,11].

3; The following empirical formulas were obtained using the least squares method for the graphical dependencies shown in Figures 4 and 5 [6]:

The angle at which the surface contact element is mounted on the rotor when a = 60o;

yg= 5 m/s, y = 78,632e1,2404x                                       R² = 0.9957                   (3.36)

yg= 25 m/s, y = 89,036e0.5931x                       R² = 0.9635                   (3.37)

The angle at which the surface contact element is mounted on the rotor when a = 45o;

yg= 5 m/s, y = 90,823e0,4114x                       R² = 0.9535                   (3.38)

yg= 25 m/s, y = 94,137e0.3531x                       R² = 0.9906                   (3.39)

The angle at which the surface contact element is mounted on the rotor when a = 30o;

yg= 5 m/s, y = 90,842e0,4359x                       R² = 0.9663                    (3.40)

yg= 25 m/s, y = 94,667e0.3319x                       R² = 0.9708                   (3.41)

The following values were adopted as the optimal parameters in experimental studies for the application of different constructions of the surface contact element of the rotor-filter device and its effect on the hydraulic resistance and cleaning efficiency of the device.[8,9,10]. Mathematical planning method and PLANEX program were used in receiving the values [6,11,12]. The diameter of the filter hole of the surface contact element as the optimal parameters df=3 mm, the diameter of the nozzle hole dsh=2 mm, the amount of liquid used to clean 1 m3 of air from dust particles Qsuyu = 0.04 m3/l and the velocity of the dust gas supplied to the device yg = 25 m/s was selected. At these values of the parametersthe hydraulic resistance of the device was DPs = 2.7 kPa and the cleaning efficiency was ēRFA = 99.45%.

Conclusion

The results obtained by applying a new contact element in the rotor-filter device showed that it is possible to achieve a efficiency of 23.45% when cleaning dust particles from 1 ÷ 5 μm and 3.05% when cleaning dust particles from 5 ÷ 20 μm compared to the existing device.

 

References:

  1. A.S.Isomidinov, R.J.Tojiev, I.T.Karimov;. Rotor device for cleaning dusty gases by wet method. // Scientific and technical journal of Fergana Polytechnic Institute. - Fergana, 2018. - №1. - B. 195–198.
  2. Isomidinov A.S. Issledovanie gidravlicheskogo soprotivleniya rotorno – filtruyushchego apparata // Universum. – Moskva, 2019. – № 10 (67) .– S. 54-58.
  3. Ж.А.Мўминов, Э.С.Умаров, Б.С.Ортиқалиев, - “Оғир юкланишли ва тез ҳаракатланувчи машина қисмларида сирпаниш подшипникларини танлаш”. Машинасозлик ишлаб чиқариш ва таълим: муаммолар ва инновацион ечимлар - 2019 й. 338-340 б.
  4. R.Tojiev, B.Tojiboyev, B.Ortikaliyev, - “Improving selecting technology of raw materials of fireproof bricks”. Тендентсии и перспективй развития науки и образования в условиях глобализатсии. 2019/4/27. №46. 606-609-ст.
  5. Тожиев Р. Ж, Ахроров А. А, Исомидинов А.С. - “Analyze of contact surface phases in wet type rotor-filter gas collector” Ученый XXI века. международный научный журнал № 5-3 (64), май 2020 г 34-36 бет
  6. Р.Ж.Тожиев, Ж.А.Мўминов, - “Чангларни комбинацион тозалаш технологияси”. ФарПИ Илмий-техника журнали - 2020. Том 24 . спец. вп. Часть 2.
  7. Б.С.Ортиқалиев, Р.Ж.Тожиев, - “Оловбардош ғишт ишлаб чиқаришда хом ашёларни саралаш жараёнини тадқиқ қилиш”. Техник тадқиқотлар журнали - 2019 й.
  8. Ж.А.Мўминов, Э.С.Умаров, Б.С.Ортиқалиев, - “Чангларни комбинацион тозалаш технологияси”. Техник тадқиқотлар журнали - 2019 й.
  9. B.S.Ortikaliev, K.J.Mukhamadsadikov, - “Working widht and speed of the harrow depending on soil resistivity”. Web of Scientist: International Scientific Research, 2021. https://wos.academiascience.org Indonesian Journal Publisher Yogyakarta 55253, Indonesia.
  10. Б.С.Ортиқалиев, Р.Ж. Тожиев, - “Сито-бурат СМ-237Арусумли оловбардош ғишт хом ашёсини саралаш машинисини иш режмларини таҳлили”. Актуальные проблемы внедрения инновационной техники и технологий на предприятиях по производству строительных материалов, химической промышленности и в смежных отраслях 2019й. 177 б.
  11. Б.С.Ортиқалиев, А.А.Абдурахмонов, - “Шиша идишларнинг қуйилиш жараёнларини имитацион компютер моделини яратиш”. Актуальные проблемы внедрения инновационной техники и технологий на предприятиях по производству строительных материалов, химической промышленности и в смежных отраслях 2019й. 179 б.
  12. Х.И.Хамзаев, Э.С.Умаров, - “Применение метода конечных разностей к расчету пологих оболочек”. Tadqiqot.uz ISSN 2181-9696 Doi Journal 10.26739/2181-9696. “TECHNICAL SCIENCES” №1 (2020) TOSHKENT-2020. 11-17стр.
Информация об авторах

Doctor of Technical Sciences, Professor, Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

д-р техн. наук, проф., Ферганский политехнический институт, Республика Узбекистан, г. Фергана

PhD, Associate Professor, Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

д-р техн. наук (PhD), доц. Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Assistant of Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

преподаватель, Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Assistant of Fergana Polytechnic Institute, Republic of Uzbekistan, Fergana

преподаватель, Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top