Mathematical model of the efficiency of the catalyst in the synthesis of vinyl acetate

Математическая модель эффективности катализатора в синтезе винилатцетата
Buronov F. Salohiddinov F.
Цитировать:
Buronov F., Salohiddinov F. Mathematical model of the efficiency of the catalyst in the synthesis of vinyl acetate // Universum: технические науки : электрон. научн. журн. 2021. 5(86). URL: https://7universum.com/ru/tech/archive/item/11845 (дата обращения: 18.12.2024).
Прочитать статью:

 

АННОТАЦИЯ

Изучены кинетические законы и кинетика и механизм реакции этилена в паровой фазе. Установлено, что общая скорость реакции пропорциональна размеру неинформированных и модифицированных активных центров палладия (а не кластеров). Доказано, что избыточное количество модификатора (как ацетат калия, так и мис) может снижать эффективность катализатора и блокировать активные центры.

ABSTRACT

The kinetic laws and kinetics and mechanism of the vapor phase reaction of ethylene have been studied differently. It was found that the total rate of the reaction was proportional to the amount of unmodified and modified active centers of palladium (not clusters). Excess amounts of the modifier (both potassium acetate and copper) have been shown to block active sites by reducing catalyst efficiency.

 

Ключевые слова: этилен, кислород, уксусная кислота, винилацетат, кинетическое уравнение, механизм.

Keywords: ethylene, oxygen, acetic acid, vinyl acetate, kinetic equation, mechanism

 

Production of vinyl acetate in heterogeneous catalysts began in Germany in the late 1930s, a method that has not lost its relevance today: the reaction is carried out in a catalytic system of zinc acetate in a temperature range of 160-240 оС and a carrier  (activated carbon) at a pressure close to atmospheric pressure, is carried out [1-2-3]. To reduce the yield of ethylidendiacetate, the reaction is carried out in excess acetylene (ratio of acetylene to acetic acid = 4-10: 1) and the process is carried out either in tubular reactors, or in fake dilute layer reactors of the catalyst. The volumetric load is 100-500 h-1, the conversion of acetic acid is about 50%, the yield of vinyl acetate is 40-80 kg/m3 per hour. Due to the accumulation of polymer and resin on the zinc acetate catalyst, it loses its activity over time, forcing the process temperature to gradually increase from 160-180 оС to 220-240 оС [4-5-6-7].

Mathematical model of catalyst efficiency. In order to create a general mathematical model showing the dependence of the efficiency of the catalyst on its composition, we present the experimental dependencies in Table 1[8-9-10].

Table 1

Conditions for conducting a series of experiments and the mathematical models obtained in them

Test Series Number

Number of components in catalyst (%)

 

W (vinyl acetate), mol/hr

W (CO2),

mol/hr

 

Pd

CH3COOK

Cu

 

 

I

0,3-3,0

0

0

(0,35∙[Pd])/(1+0,05[Pd]4)

(0,08∙[Pd])/(1+0,065[Pd]3)

II

0,2

2,0-20,0

0

(0,1∙(1+

[CH3COOK]))/(1,0+0,013*[CH3COOK]2)

 

0,04+0,0043∙

[CH3COOK]

III

0,15

5

0,05-3,0

  

 

0,075+0,018∙[ Au]

 

The total rate of reaction is proportional to the amount of unmodified and modified active centers of palladium (not clusters). Excess amounts of the modifier (both potassium acetate and copper) block the active sites, reducing the efficiency of the catalyst. The physical meaning of the partial mathematical models obtained here consists of fractional-linear functions. The difference in the equations of the rates of formation of vinyl acetate and CO2 indicates that these reactions occur at different active sites of the catalyst.

Taking into account the above considerations, we have the following functional dependencies:

WBA=[Pd]∙(C1+C2[CH3COOK]+C3[Cu])/(1+C4[Pd]4+C5[CH3COOK]2+C6[Cu])

WCO2 = [Pd]∙(C1`+C2`[CH3COOK]+C3`[Cu])/(1+C4`[Pd]4)

The numerical values of the coefficients C1-C6 and C1`-C4` were obtained by comparing the data of the equations with the partial model of the reaction rates obtained earlier and using a number of regression methods. Thus, the generalized mathematical models of catalyst activity, which are defined as the rates of reactions for the formation of vinyl acetate and CO2, are as follows:

WBA = ([Pd]∙(0,35 + 0,38[CH3COOK] + 4,2[Cu]))/((1 + 0,05(1 + 80[Pd]4 + 0,01[CH3COOK]2 + 1,1[Cu])))

WCO2 = ([Pd]∙(0,09 + 0,0244[CH3COOK] + 0,1[Cu]))/((1 + 0,07(1 + 20[Pd]4)))

Among all the experiments, the rates of the formation of vinyl acetate and the values ​​calculated by mathematical models are well matched.

The correlation between the experimental and calculated values ​​for the rates of carbon dioxide formation is two parallel straight lines - for a series of experiments on the effect of [Cu] (curve 1 to the right of Fig. 1). and [Pd] for a series of experiments on the effect of quantity (curve 2 to the right of Fig. 1). The significant increase in the experimental values ​​of the WCO2 velocities for a series of reactions to study the effects of copper is explained by the use of the above-mentioned reason - the use of catalyst samples prepared in violation of the technology. Thus, the velocities of WCO2 differ from those calculated from the experimental values ​​by a constant magnitude, indicating that additional reactions of ethylene combustion occur in the holder rather than in the active palladium centers. The latter value used mathematical models to optimize the catalyst composition in order to find the most efficient samples.[11-12-13]

 

Figure 1. Correlation between experimental and calculated values of reaction rates

 

Using mathematical models of the dependence of catalyst activity on the components stored in it (Pd, CH3COOK and Cu), we determined their optimal composition to achieve both high rates and selectivity of vinylacetate formation: 0.4% Rd + 4% Cu + 7% CH3COOK / VKTs.[3-4-5-7]

Effect of steam-gas mixture volume rate on vinyl acetate yield. BGA volumetric velocity range: 2000 to 10000 h-1 in the middle zone of the reactor at a temperature of 165℃, a pressure of 4 atm, a ratio of ethylene to acetic acid 4: 1 and an oxygen content of 7%. The results of the experiments are presented in Table 2.

The dependence of the reagent conversion on the time the reaction mass remains in the reactor is linear, indicating that the reaction rate is constant during this time due to the insignificant value of the reagent conversion. This is confirmed by maintaining the linearity of the time dependence of vinyl acetate output and CO2 formation.[11-12]

Table 2

The effect of the volumetric velocity of a vapor-gas mixture on the yield of vinyl acetate

Reaction time, hour

Eat vinyl acetate,

gr mol

Education CO2

gr mol

Selectivity and conversion (CH3COOH) (C2H4)

Volumetric speed ПГС=2000 hour-1

8

280

3,26

31,17

0,708

0,902 (26,5)   (7,36)

16

568

6,61

63,19

1,436

 

24

872

10,14

96,95

2,203

 

32

1152

13,39

128,02

2,909

 

40

1416

16,46

157,37

3,576

 

48

1672

19,44

185,86

4,224

 

Volumetric speed ПГС=4000 hour -1

8

299,2

3,48

32,52

0,739

0,904(12,04)   (3,33)

16

619,2

7,20

67,28

1,529

 

24

923,2

10,73

100,27

2,279

 

32

1211,2

14,08

131,58

2,991

 

40

1504,2

17,53

163,82

3,723

 

48

1795,2

20,87

195,03

4,433

 

Volumetric speed ПГС=6000 hour -1

8

304

3,53

22,66

0,515

0,932(8,76)   (2,35)

16

624

7,20

46,23

1,051

 

24

936

10,88

69,86

1,588

 

32

1232

14,33

92,007

2,091

 

40

1520

17,67

113,45

2,578

 

48

1816

21,12

135,61

3,082

 

Volumetric speed ПГС=7500 hour -1

8

328

3,81

21,41

0,486

0,94 (7,07)   (1,88)

16

672

7,81

43,87

0,997

 

24

1000

11,63

65,33

1,485

 

32

1312

15,26

85,72

1,980

 

40

1632

18,98

106,62

2,423

 

48

1960

22,79

128,01

2,909

 

 

CONCLUSION

The process of obtaining ethylene by catalytic oxidation in the vapor phase to obtain vinyl acetate was studied in detail in a catalyst of the order 0.4% Rd + 4% Cu + 7% CH3COOK / VKTs. The overall rate of the reaction was found to be proportional to the amount of unmodified and modified active centers of palladium (not clusters). Excessive amounts of the modifier (both potassium acetate and copper) have been shown to reduce the efficiency of the catalyst and block the active sites. The study selected the following optimal conditions for the reaction: in the middle zone of the reactor at a temperature of 165℃ volumetric speed - 2000 h - 1, 4 atm, the ratio of ethylene to acetic acid is 4: 1 and the oxygen content is 7%. A mechanism for the formation of vinyl acetate from ethylene and acetic acid in the presence of a palladium catalyst has been proposed.

 

Bibliography:

  1. Дустов, А. Ю., Султонов, Н. Н., & Буронов, Ф. Э. (2020). Расширение шуртанского гхк с производством дополнительного полиэтилена. Международный академический вестник, (3), 96-99.
  2. Абдирахимов, И. Э., Курбанов, А. Т., Буронов, Ф. Э., & Самадов, А. Х. (2019). Технология переработки тяжелых нефтей и нефтяных остатков путем применения криолиза. Аллея науки, 3(12), 310-314.
  3. Рахматов, Х. Б., Шамаев, Б. Э., Хайдаров, Б. Х., & Буронов, Ф. Э. (2019). Технология переработки низкосортных сильвинитов на хлорид калия флотационным методом. Международный академический вестник, (11), 83-85.
  4. Абдирахимов, И. Э., & Буронов, Ф. Э. (2018). Использование твердофазной спектрофотометрии для определения ионов рения в нефтепродуктах. In Современные твердофазные технологии: теория, практика и инновационный менеджмент (pp. 337-339).
  5. Рахматов, Х. Б., Султонов, Н. Н., & Буронов, Ф. Э. (2018). Исследование процесса конверсии сульфата калия из хлорида калия Тюбегатанского месторождения и мирабилита Тумрукского месторождения. Техника. Технологии. Инженерия, (1), 35-39.
  6. Абдирахимов, И. Э., & Буронов, Ф. Э. (2018). Очистка и восстановление почв после загрязнения нефтью и нефтепродуктами. In Современные твердофазные технологии: теория, практика и инновационный менеджмент (pp. 296-298).
  7. Буронов, Ф. Э., & Абдирахимов, И. Э. (2018). Природные битумы и тяжелые нефти, проблемы их освоения. In Фундаментальные и прикладные исследования: от теории к практике (pp. 212-215).
  8. Абдирахимов И.Э. Деэмульгирование нефтеводяных эмульсий // Universum: технические науки: научный журнал. – № 4(85). Часть 3, М., Изд. «МЦНО»,  2021. (pp. 72-75)
  9. Буронов, Ф. Э., & Курбанов, А. Т. (2017). Математическая модель процесса перемешивания буровых растворов и смесей. In Новые технологии-нефтегазовому региону (pp. 246-248).
  10. И.Э.Абдирахимов, Ш.К Турасуннат, АТ Курбанов Тепловые насосы для подогрева сетевой воды. Журнал Science Time,2020 стр 55-58
  11. Файзуллаев, Н. И., Буронов, Ф. Э., Мусулмонов, Н. Х., Кодиров, О. Ш., & Тошбоев, Ф. Н. (2021). Влияние количества активных компонентов катализатора на выход продукта при синтезе винилацетата из этилена и уксусной кислоты. Bulletin of Science and Practice7(4), 301-311.
  12. Файзуллаев, Н., & Буронов, Ф. (2021). Исследование каталитической активности катализатора в синтезе винилатцетата из этилена при различных носительях. Збірник наукових праць ΛΌГOΣ. DOI 10.36074/logos-30.04.2021.v1.44
  13. Рахмонкулов М.Т., Салохиддинов Ф.А. Получение антикоррозионных материалов на основе местного сырья для нефтетранспортирующих трубопроводов//Молодой ученый-Международный научный журнал -2016. -№13 (117) -с.207-210
Информация об авторах

Lecturer, Karshi Engineering and Economic Institute, Uzbekistan, Karshi

преподаватель Каршинского инженерно-экономического института, Узбекистан, г. Карши

Senior teacher, Karshi engineering-economics institute, Uzbekistan, Karshi

старший преподаватель, Каршинский инженерно-экономический институт, Узбекистан, г. Карши

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top