старший научный сотрудник, Академия Наук Республики Узбекистан Институт общей и неорганической химии, Республика Узбекистан, г. Ташкент
Технология получения связующего для основания асфальтовых дорог и кровельного покрытия
АННОТАЦИЯ
Исследован процесс переработка местного промыслового нефтяного шлама для получения связующего для основания автомобильных дорог и кровельного покрытия. Использован метод окисления нефтяных шламов для получения связующего. Для производства асфальтового покрытия разработана новая инновационная технология с легкой и не сложной конструкцией. Получен химический состав связующих для кровельного покрытия.
ABSTRACT
The process of processing local oil sludge to obtain a binder for the base of highways and roofing has been investigated. Used the method of oxidation of oil sludge to obtain a binder. For the production of asphalt pavement, a new innovative technology has been developed with a light and simple structure. The chemical composition of binders for roofing has been obtained.
Ключевые слова: Нефтешлам, утилизация, геосреда, механические примеси, деэмульгатор.
Keywords: Oil sludge, disposal, geoenvironment, mechanical impurities, demulsifier.
В настоящее время развитие получают многочисленные технологии переработки нефтесодержащих отходов, направленные на использование их ресурсного потенциала с получением различных товарных продуктов, таких как: дорожно-строительные материалы, вторичное углеводородное сырье различных технологических процессов нефтепереработки, вторичные нефтепродукты. Частичное ресурс восстановление нефтешламов способствует значительному экологическому и экономическому эффекту [1].
Нефтешламы образуются при добыче, транспортировке и переработке нефтяного сырья. Любые нефтешламы образуются в результате их взаимодействия с природной средой и формируются в условиях этой среды с течением времени. Поэтому структурные и физико-химические свойства всех нефтешламов в природе напрямую связаны с ее образованием. Нефтешламы в виде товара существенно отличаются от других нефтешламов по своему составу и свойствам, они являются высокоочищенными и наиболее приемлемыми для переработки.
Другие типы нефтешламов образуются в результате разливов нефти на землю, сбоев в технологических процессах и процессов отстоя. Исследования нефтешламов показали, что они варьируются в широких пределах из-за смешивания нефтепродуктов с водой и механическими примесями (включая песок, глину, частицы ржавчины и т. д.). Углеводороды составляют 50-98%, вода - 5-52%, а механические добавки - 4-65%. В результате изменяются физико-химические свойства нефтешламов и количество углеводородов в них. Часто состав вновь образованных нефтешламов представляет собой продукт, аналогичный нефти, которая хранится на складах. Эта форма нефтешламов обычно встречается в бассейнах автозаправочных станций.
Высоковязкие, густые и липкие (высоковязкие) нефтешламы являются высокомолекулярными соединениями морфологически сжатых нефтяных углеводородов.
Утилизация нефтяных шламов, содержащих в своем составе компоненты сырой нефти, является перспективной для нужд дорожного хозяйства. Экспериментально исследована возможность укрепления минеральных материалов и грунтов добавлением жидких и твердых нефтяных шламов. Было установлено, что введение добавок НШ позволяет улучшить строительно-технические свойства минеральных материалов: снизить водонасыщение и набухание материала, увеличить прочность в 1,50-2,55 раза [2]
Промысловый нефтяной шлам Мубарекского газодобывающего предприятия являются характерными отходами для энергетических, транспортных промпредприятий, химических и металлургических заводов.
Получения связующего из промыслового нефтяного шлама является одной из актуальных задач для Республики Узбекистан и входит в разряд импортозамещающих технологий с использованием оптимальных вариантов композиций различных материалов.
Процесс получения связующих для основания асфальтовых и кровельного покрытия из жидких нефтешламов на основе новой технологии с легкой и не сложной конструкцией а также простейщем методом окисления в Институте общей и неорганической химии Академии Наук Республики Узбекистан.
Нами было разработано мобильное экспериментальное устройство для производства связующего для основания асфальтовых дорог и кровельного покрытия (рис. 1).
Известно, что глубокая очистка различных нефтешламов представляет собой многоступенчатый процесс, требуемый сложное технологическое оборудование и тяжелый труд, который входит в категорию крупногабаритных устройств с фиксированными энергоёмкими конструкциями.
По этой причине важной задачей является упрощение процесса получения связующих для асфальтового и кровельного покрытия из жидких нефтешламов на основе новой технологии с легкой и не сложной конструкцией.
Рассмотрим принцип работы испытательной установки для получения связующего для основания асфальтовых дорог и кровельного покрытия из жидких нефтешламов. Жидкий нефтешлам отстаивается в течение 3-4 часов, затем для повышения его текучести за счет уменьшения его вязкости нагревается до примерно 70-80°С, выливается в емкость 1 устройства для сырья, затем газовая горелка 16 включается для повышения температуры в колонне, и дозирующая труба 15 медленно направляет окисляющий воздух на дно колонны.
Когда температура в колонне поднимается до 150-160°C, кран 2 открывается и жидкий нефтешлам медленно направляется вниз по потоку в нижнюю секцию 3 колонны, и легкие летучие фракции в жидком нефтешламе испаряются и перемещаются выше по потоку от колонны и конденсируются через конденсатор 10 для охлаждения паровой фракции через 8 труб (легкие фракции в конденсаторе охлаждаются водой) и падает в мерную колбу 11 для сбора конденсата.
Рисунок 1. Технологическая схема устройства для получения связующего из жидкого нефтешлама
1-контейнер для сырой нефти; 2-кран для регулировки расхода сырья; 3-полосная колонна; 4-упаковка для готовой продукции; контейнер для 5 готовых изделий; 6-клапан сброса лишнего давления; 7-манометр для измерения давления в колонке; 8-паровая выпускная труба; 9-труба для дыма выхлопных газов; конденсатор для охлаждения 10-паровой фракции; 11-мерная трубка для сбора конденсата; 12-конденсатный коллектор; 13-снаряд вождения конвоя; 14-термометры для измерения температуры в колонке; 15-окислительная воздухозаборная труба; 16-труба для топливного газа; 17-дно колонны.
Такая мерная колба служит для идентификации и разделению конденсированных фракций по температуре испарения. Каждую фракцию разливают в отдельные бутылки в соответствии с ее фракционным составом. Фракции контролируются 14 термометрами. Давление в колонне контролируется 7 манометрами. Избыточное давление автоматически попадает в атмосферу через выпускной клапан 6. Как только жидкий нефтешлам в резервуаре для сырья полностью попадет в колонну, кран 2 закроется, температура в колонне повысится до 300°C, и подача воздуха будет продолжаться. Процесс заканчивается, когда легкие фракции прекратят попадать в измерительную колбу.
В конце эксперимента остаточная фракция охлаждается до температуры 50–60°C и выливается в отдельный контейнер. Полученная масса может быть использована в качестве связующего для основания асфальтированных дорог и кровельного покрытия.
Экспериментальная установка предполагает, что процесс является прерывным и непрерывным в реакторе с непрерывным фракционированием и окислением. Фракции, выходящие из нефтешлама, одновременно выходят из верхней части колонны, а также окисляются путем нагнетания атмосферного воздуха в сырье. Окисление проводят при 300°С в течение 3-4 часов.
На сегодняшний день проводится огромное количество научно-исследовательских работ по получению связующих веществ из нефтешламов и в основе каждого научно-практического исследования лежит разработка технологий, которые являются экономически эффективными. Эта научно-исследовательская работа направлена на очистку нефтешламов от присадок и применение их в необходимых областях промышленности.
Нерастворимые при температуре 3000С соединения углеводородов и азотсодержащие первичные продукты медленно собираются. То есть соединения с углеродами выше С15 образуют нефтешламы. Кроме того, эти углеводороды также содержат азот и серу.
Химический состав связующих для кровельного покрытия полученных из нефтешламов приведен в таблице 1.
Таблица 1.
Химический состав связующих из различных нефтешламов
Наименование группового состава углеводородов |
Различные виды нефтешламов, % масс |
|||
Грунтовые |
Придонные |
Резервуарные |
Промысловые |
|
Высокомолекулярные парафиновые |
10-35 |
10-40 |
5-20 |
10-30 |
Ароматические конденсированные |
12-20 |
25-30 |
15-18 |
25-30 |
Ароматические нафтены |
20-25 |
20-25 |
25-40 |
20-25 |
Смолисто асфальтеновые |
18-22 |
13-17 |
20-25 |
30-45 |
Как видно из полученных данных таблицы 1, в состав нефтешлама входят: высокомолекулярные парафиновые соединения -5÷40%, ароматические конденсированные соединения – 12÷30%, ароматические нафтены – 20÷40%, а асфальтеновые смолы – 13÷45%.
Исходя из полученных выше указанных результатов а также после окисления нефтешламов в экспериментальной технологии получен связующий для кровельного и фундаментного покрытия направлен на испытании в строительный участок ХРСУ-1 находящий под руководством ООО “Бухара Проспер Инвест”.
Вывод
1) Промысловый нефтяной шлам Мубарекского газодобывающего предприятия был изучен и направлен на переработку.
2) Разработано мобильное экспериментальное устройство для производства связующего для основания асфальтовых дорог и кровельного покрытия.
3) Получен химический состав связующих из различных нефтешламов.
4) Полученные связующее направлкны на эксплуатационное испатание строительный участок ХРСУ-1.
Список литературы:
- Пименов А.А. Управление отходами и остатками предприятий химии и нефтехимии с использованием их ресурсного потенциала: дисс…докт. техн. наук: Андрей Александрович Пименов: Самарский государственный технический университет. – Самара, 2017. – 263 с.
- Брехман А. И., Ильина О. Н., Трифонов А. А. Органоминеральные смеси на основе нефтяных шламов // Изв. КГАСУ. – 2010. – № 1. – С. 264-267.